Multi-scale fMRI time series analysis for understanding
neurodegeneration in MCI
- URL: http://arxiv.org/abs/2402.02811v1
- Date: Mon, 5 Feb 2024 08:41:39 GMT
- Title: Multi-scale fMRI time series analysis for understanding
neurodegeneration in MCI
- Authors: Ammu R., Debanjali Bhattacharya, Ameiy Acharya, Ninad Aithal and
Neelam Sinha
- Abstract summary: We present a technique that spans multi-scale views, examining each individual ROI that constitutes the network.
Deep learning based classification is utilized in understanding neurodegeneration.
- Score: 2.474908349649168
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we present a technique that spans multi-scale views (global
scale -- meaning brain network-level and local scale -- examining each
individual ROI that constitutes the network) applied to resting-state fMRI
volumes. Deep learning based classification is utilized in understanding
neurodegeneration. The novelty of the proposed approach lies in utilizing two
extreme scales of analysis. One branch considers the entire network within
graph-analysis framework. Concurrently, the second branch scrutinizes each ROI
within a network independently, focusing on evolution of dynamics. For each
subject, graph-based approach employs partial correlation to profile the
subject in a single graph where each ROI is a node, providing insights into
differences in levels of participation. In contrast, non-linear analysis
employs recurrence plots to profile a subject as a multichannel 2D image,
revealing distinctions in underlying dynamics. The proposed approach is
employed for classification of a cohort of 50 healthy control (HC) and 50 Mild
Cognitive Impairment (MCI), sourced from ADNI dataset. Results point to: (1)
reduced activity in ROIs such as PCC in MCI (2) greater activity in occipital
in MCI, which is not seen in HC (3) when analysed for dynamics, all ROIs in MCI
show greater predictability in time-series.
Related papers
- Leveraging Persistent Homology for Differential Diagnosis of Mild Cognitive Impairment [2.474908349649168]
Mild cognitive impairment (MCI) is characterized by subtle changes in cognitive functions, often associated with disruptions in brain connectivity.
The present study introduces a novel fine-grained analysis to examine topological alterations in neurodegeneration pertaining to six different brain networks of subjects.
arXiv Detail & Related papers (2024-08-28T09:01:55Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Preserving Specificity in Federated Graph Learning for fMRI-based
Neurological Disorder Identification [31.668499876984487]
We propose a specificity-aware graph learning framework for rs-fMRI analysis and automated brain disorder identification.
At each client, our model consists of a shared and a personalized branch, where parameters of the shared branch are sent to the server while those of the personalized branch remain local.
Experimental results on two fMRI datasets with a total of 1,218 subjects suggest SFGL outperforms several state-of-the-art approaches.
arXiv Detail & Related papers (2023-08-20T15:55:45Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
Multi-modal functional magnetic resonance imaging (fMRI) can be used to make predictions about individual behavioral and cognitive traits based on brain connectivity networks.
We propose an interpretable multi-modal graph convolutional network (MGCN) model, incorporating the fMRI time series and the functional connectivity (FC) between each pair of brain regions.
We validate our MGCN model on the Philadelphia Neurodevelopmental Cohort to predict individual wide range achievement test (WRAT) score.
arXiv Detail & Related papers (2021-01-20T20:53:07Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography.
Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores.
Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
arXiv Detail & Related papers (2020-08-27T23:43:56Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.