論文の概要: Hierarchical Blockmodelling for Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2408.15649v1
- Date: Wed, 28 Aug 2024 09:04:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:43:13.053012
- Title: Hierarchical Blockmodelling for Knowledge Graphs
- Title(参考訳): 知識グラフのための階層的ブロックモデリング
- Authors: Marcin Pietrasik, Marek Reformat, Anna Wilbik,
- Abstract要約: 知識グラフ上の階層的なエンティティクラスタリングのためにブロックモデルを使用します。
Nested Chinese Restaurant ProcessとStick Breaking Processを生成モデルに統合することで、階層的なクラスタリングの誘導が可能になる。
我々は、合成および実世界のデータセット上でモデルを評価し、ベンチマークモデルと定量的に比較した。
- 参考スコア(独自算出の注目度): 0.5530212768657544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the use of probabilistic graphical models, specifically stochastic blockmodels, for the purpose of hierarchical entity clustering on knowledge graphs. These models, seldom used in the Semantic Web community, decompose a graph into a set of probability distributions. The parameters of these distributions are then inferred allowing for their subsequent sampling to generate a random graph. In a non-parametric setting, this allows for the induction of hierarchical clusterings without prior constraints on the hierarchy's structure. Specifically, this is achieved by the integration of the Nested Chinese Restaurant Process and the Stick Breaking Process into the generative model. In this regard, we propose a model leveraging such integration and derive a collapsed Gibbs sampling scheme for its inference. To aid in understanding, we describe the steps in this derivation and provide an implementation for the sampler. We evaluate our model on synthetic and real-world datasets and quantitatively compare against benchmark models. We further evaluate our results qualitatively and find that our model is capable of inducing coherent cluster hierarchies in small scale settings. The work presented in this paper provides the first step for the further application of stochastic blockmodels for knowledge graphs on a larger scale. We conclude the paper with potential avenues for future work on more scalable inference schemes.
- Abstract(参考訳): 本稿では,確率的グラフィカルモデル,特に確率的ブロックモデルを用いて,知識グラフ上の階層的エンティティクラスタリングを実現する。
これらのモデルはセマンティックウェブコミュニティではほとんど使われないが、グラフを確率分布の集合に分解する。
これらの分布のパラメータは推論され、その後のサンプリングでランダムなグラフを生成する。
非パラメトリックな設定では、階層構造に対する事前の制約なしに階層的クラスタリングを誘導することができる。
具体的には、Nested Chinese Restaurant Process と Stick Breaking Process を生成モデルに統合することで実現されている。
本稿では,そのような統合を活用して,その推論のためのギブスサンプリングスキームの崩壊を導出するモデルを提案する。
理解を深めるために,この導出のステップを記述し,サンプル実装を提案する。
我々は、合成および実世界のデータセット上でモデルを評価し、ベンチマークモデルと定量的に比較した。
さらに定性的評価を行い,小規模設定で一貫性クラスタ階層を誘導できることを見出した。
本稿では,より大規模な知識グラフに対する確率的ブロックモデルのさらなる適用に向けた第一歩について述べる。
この論文は、よりスケーラブルな推論スキームに関する今後の研究の道のりについてまとめる。
関連論文リスト
- Multi-View Stochastic Block Models [34.55723218769512]
我々は、この設定をキャプチャするtextitmulti-viewブロックモデルと呼ばれる、新しいモデルのファミリーを形式化する。
本モデルでは,まず,複数のグラフの和合体をネーティブに扱う効率的なアルゴリズムについて検討する。
そこで本研究では,各グラフの構造を別々に解析することで,従来の手法を確実に上回るアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-07T11:45:31Z) - On the Role of Edge Dependency in Graph Generative Models [28.203109773986167]
本稿では,グラフ生成モデルのための新しい評価フレームワークを提案する。
我々は、精度とエッジの多様性の両方を保証するために、モデル生成グラフの重複の重要性に焦点をあてる。
我々の単純な解釈可能なモデルが、一般的な生成モデルと競合するベースラインを提供することを示す。
論文 参考訳(メタデータ) (2023-12-06T18:54:27Z) - HiGen: Hierarchical Graph Generative Networks [2.3931689873603603]
ほとんどの実世界のグラフは階層構造を示しており、しばしば既存のグラフ生成法で見過ごされる。
本稿では,グラフの階層的な性質を捉え,グラフのサブ構造を粗い方法で連続的に生成するグラフ生成ネットワークを提案する。
このモジュラーアプローチは、大規模で複雑なグラフに対してスケーラブルなグラフ生成を可能にする。
論文 参考訳(メタデータ) (2023-05-30T18:04:12Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Beyond Conjugacy for Chain Event Graph Model Selection [0.0]
連鎖イベントグラフはベイズネットワークを一般化する確率的グラフィカルモデルのファミリーである。
共役性に依存しない連鎖イベントグラフにおけるモデル選択に対する混合モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:33:01Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Semi-Supervised Clustering of Sparse Graphs: Crossing the
Information-Theoretic Threshold [3.6052935394000234]
ブロックモデルは、ネットワーク構造データのクラスタリングとコミュニティ検出のための標準ランダムグラフモデルである。
ネットワークトポロジに基づく推定器は、モデルパラメータが一定の閾値以下である場合、スパースグラフの確率よりも大幅に向上する。
パラメータ領域全体でラベルの任意の部分で実現可能であることを示す。
論文 参考訳(メタデータ) (2022-05-24T00:03:25Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
このアプローチは、多くの困難な設定において、ジェネリックサンプリングよりも優れていることを示す。
また,高次元離散データを用いた深部エネルギーモデルトレーニングのための改良型サンプリング器についても実演した。
論文 参考訳(メタデータ) (2021-02-08T20:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。