論文の概要: TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2408.15657v1
- Date: Wed, 28 Aug 2024 09:18:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:21:03.656303
- Title: TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation
- Title(参考訳): TeFF: 追跡強化フォーミングフリーのFew-shot 3D LiDARセマンティックセマンティックセマンティックセグメンテーション
- Authors: Junbao Zhou, Jilin Mei, Pengze Wu, Liang Chen, Fangzhou Zhao, Xijun Zhao, Yu Hu,
- Abstract要約: 本稿では,LiDARデータの時間的連続性を利用して,現在の数ショットセマンティックセマンティックセマンティクスの限界に対処する。
追跡モデルを用いて、LiDARフレームのシーケンスから擬似地下構造を生成し、新しいクラスで学習するデータセットの能力を向上する。
トレーニング可能なパラメータの数を減らし,新しいクラスへの適応性を向上しつつ,ベースクラス上でのモデル性能を保留するテクニックであるLoRAを取り入れた。
- 参考スコア(独自算出の注目度): 10.628870775939161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In autonomous driving, 3D LiDAR plays a crucial role in understanding the vehicle's surroundings. However, the newly emerged, unannotated objects presents few-shot learning problem for semantic segmentation. This paper addresses the limitations of current few-shot semantic segmentation by exploiting the temporal continuity of LiDAR data. Employing a tracking model to generate pseudo-ground-truths from a sequence of LiDAR frames, our method significantly augments the dataset, enhancing the model's ability to learn on novel classes. However, this approach introduces a data imbalance biased to novel data that presents a new challenge of catastrophic forgetting. To mitigate this, we incorporate LoRA, a technique that reduces the number of trainable parameters, thereby preserving the model's performance on base classes while improving its adaptability to novel classes. This work represents a significant step forward in few-shot 3D LiDAR semantic segmentation for autonomous driving. Our code is available at https://github.com/junbao-zhou/Track-no-forgetting.
- Abstract(参考訳): 自動運転車では、3D LiDARは車両の周囲を理解する上で重要な役割を果たす。
しかし、新たに出現した、注釈のないオブジェクトは、セマンティックセグメンテーションのための数発の学習問題を提示する。
本稿では,LiDARデータの時間的連続性を利用して,現在の数ショットセマンティックセマンティックセマンティクスの限界に対処する。
追跡モデルを用いて、LiDARフレームのシーケンスから擬似地下構造を生成することにより、データセットを大幅に強化し、新しいクラスで学習するモデルの能力を向上する。
しかし、このアプローチでは、新しいデータに偏ったデータ不均衡が生じ、破滅的な忘れ込みという新たな課題が浮かび上がっている。
これを軽減するため,トレーニング可能なパラメータの数を削減し,新しいクラスへの適応性を向上しつつ,ベースクラス上でのモデル性能を保ったLoRAを組み込んだ。
この研究は、自動運転のための数発の3D LiDARセマンティックセマンティックセグメンテーションにおいて、大きな前進を示している。
私たちのコードはhttps://github.com/junbao-zhou/Track-no-forgetting.comで公開されています。
関連論文リスト
- FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
トレーニング-ファインタニングアプローチは、さまざまな下流データセットとタスクをまたいだトレーニング済みのバックボーンを微調整することで、ラベル付けの負担を軽減することができる。
本稿では, 一般表現学習が, 占領予測のタスクを通じて達成できることを, 初めて示す。
本研究は,LiDAR 点の理解を促進するとともに,LiDAR の事前訓練における今後の進歩の道を開くことを目的とする。
論文 参考訳(メタデータ) (2023-09-19T11:13:01Z) - LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels [50.40632021583213]
我々は、危険な位置で物理的に運転することなく、新しい視点からLiDAR点雲を合成することを提案する。
我々は、LiDARスキャンを入力とし、将来の軌跡を出力として予測するディープラーニングモデルを訓練する。
次に、この予測軌道にウェイポイントコントローラを適用して、エゴ車両のスロットルおよびステアリングラベルを決定する。
論文 参考訳(メタデータ) (2023-08-02T20:46:43Z) - Few-shot 3D LiDAR Semantic Segmentation for Autonomous Driving [3.0033590064167317]
本稿では,新しいクラスとベースクラスを同時に予測する3次元LiDARセマンティックセマンティックセマンティックセマンティクス法を提案する。
本手法は,背景曖昧性の問題を解決するために,一般化された少数ショットセマンティックセマンティックセグメンテーションを提案する。
論文 参考訳(メタデータ) (2023-02-17T09:52:36Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
本稿では,LiDARセマンティックセグメンテーションモデルのロバスト性を,様々な汚職の下で包括的に解析することを目的とする。
本稿では,悪天候,計測ノイズ,デバイス間不一致という3つのグループで16のドメイン外LiDAR破損を特徴とするSemanticKITTI-Cというベンチマークを提案する。
我々は、単純だが効果的な修正によってロバスト性を大幅に向上させるロバストLiDARセグメンテーションモデル(RLSeg)を設計する。
論文 参考訳(メタデータ) (2023-01-03T06:47:31Z) - LWSIS: LiDAR-guided Weakly Supervised Instance Segmentation for
Autonomous Driving [34.119642131912485]
より巧妙なフレームワークであるLiDAR誘導弱監視インスタンス(LWSIS)を提示する。
LWSISは市販の3Dデータ、すなわちポイントクラウドと3Dボックスを2Dイメージインスタンスセグメンテーションモデルをトレーニングするための自然な弱い監督手段として使用している。
我々のLWSISは、訓練中のマルチモーダルデータの補完情報を利用するだけでなく、密集した2Dマスクのコストを大幅に削減します。
論文 参考訳(メタデータ) (2022-12-07T08:08:01Z) - Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation [23.666607237164186]
本稿では,LiDAR-MOSの性能向上のために,空間時空間情報とLiDARスキャンの異なる表現モダリティを併用した新しいディープニューラルネットワークを提案する。
具体的には、まず、空間情報と時間情報とを別々に扱うために、レンジ画像に基づくデュアルブランチ構造を用いる。
また、3次元スパース畳み込みによるポイントリファインメントモジュールを使用して、LiDAR範囲の画像とポイントクラウド表現の両方からの情報を融合する。
論文 参考訳(メタデータ) (2022-07-05T17:59:17Z) - COLA: COarse LAbel pre-training for 3D semantic segmentation of sparse
LiDAR datasets [3.8243923744440926]
転送学習は、2次元コンピュータビジョンにおいて、利用可能な大量のデータを活用し、高い性能を達成するための実証された技術である。
本研究では,スパース自動運転LiDARスキャンのリアルタイムな3次元セマンティックセマンティックセマンティックセグメンテーションを実現する。
我々は,COLA(Coarse label pre-training)と呼ばれる新しい事前訓練タスクを導入する。
論文 参考訳(メタデータ) (2022-02-14T17:19:23Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。