Spin-dependent exotic interactions
- URL: http://arxiv.org/abs/2408.15691v3
- Date: Mon, 14 Oct 2024 09:04:03 GMT
- Title: Spin-dependent exotic interactions
- Authors: Lei Cong, Wei Ji, Pavel Fadeev, Filip Ficek, Min Jiang, Victor V. Flambaum, Haosen Guan, Derek F. Jackson Kimball, Mikhail G. Kozlov, Yevgeny V. Stadnik, Dmitry Budker,
- Abstract summary: Novel interactions beyond the four known fundamental forces in nature may arise due to "new physics" beyond the standard model, manifesting as a "fifth force"
This review is focused on spin-dependent fifth forces mediated by exotic bosons such as spin-0 axions and axionlike particles and spin-1 Z' bosons, dark photons, or paraphotons.
- Score: 4.843592441369881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel interactions beyond the four known fundamental forces in nature (electromagnetic, gravitational, strong and weak interactions), may arise due to "new physics" beyond the standard model, manifesting as a "fifth force". This review is focused on spin-dependent fifth forces mediated by exotic bosons such as spin-0 axions and axionlike particles and spin-1 Z' bosons, dark photons, or paraphotons. Many of these exotic bosons are candidates to explain the nature of dark matter and dark energy, and their interactions may violate fundamental symmetries. Spin-dependent interactions between fermions mediated by the exchange of exotic bosons have been investigated in a variety of experiments, particularly at the low-energy frontier. Experimental methods and tools used to search for exotic spin-dependent interactions, such as atomic comagnetometers, torsion balances, nitrogen-vacancy spin sensors, and precision atomic and molecular spectroscopy, are described. A complete set of interaction potentials, derived based on quantum field theory with minimal assumptions and characterized in terms of reduced coupling constants, are presented. A comprehensive summary of existing experimental and observational constraints on exotic spin-dependent interactions is given, illustrating the current research landscape and promising directions of further research.
Related papers
- Exotic Spin-dependent Energy-level Shift Noise Induced by Thermal Motion [7.890042560497392]
We introduce a theoretical model based on thermal motion of particles to search for exotic spin-dependent interactions.
The resulting exotic energy-level shift noise could be sensed by high-sensitivity instruments.
This model can be easily applied in other fields of quantum sensing, such as atomic clocks, atom interferometers and NV-diamond sensors.
arXiv Detail & Related papers (2024-01-11T12:12:43Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - SAPPHIRE: Search for exotic parity-violation interactions with quantum
spin amplifiers [7.294308411533284]
We develop a technique based on quantum Spin Amplifier for Particle PHysIcs REsearch (SAPPHIRE)
The present technique effectively amplifies the pseudomagnetic field generated by exotic interactions by a factor of about 200.
Our studies, using such a quantum amplification technique, open the doors to exploring the parity-violation interactions mediated by Z' bosons.
arXiv Detail & Related papers (2022-05-15T08:53:27Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Search for exotic spin-dependent interactions with a spin-based
amplifier [6.561459339607202]
We show a search for exotic spin- and velocity-dependent interactions with a spin-based amplifier.
Our limits represent at least two orders of magnitude improvement compared to previous experiments.
arXiv Detail & Related papers (2021-03-29T02:32:35Z) - Tests of Fundamental Quantum Mechanics and Dark Interactions with Low
Energy Neutrons -- Extended Version [1.5749416770494706]
Despite being unstable, free neutrons live long enough to be used as test particles in interferometric, spectroscopic, and scattering experiments.
neutrons offer the opportunity to observe the effects of gravity and hypothetical dark forces on extended matter wave functions.
arXiv Detail & Related papers (2020-12-16T16:15:18Z) - Driven dynamics of a quantum dot electron spin coupled to bath of
higher-spin nuclei [0.0]
We study the interplay of optical driving and hyperfine interaction between an electron confined in a quantum dot and its surrounding nuclear spin environment.
We find that while hyperfine interactions drive dynamic nuclear polarization and mode-locking, quadrupolar couplings counteract these effects.
arXiv Detail & Related papers (2020-12-14T03:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.