Searches for exotic spin-dependent interactions with spin sensors
- URL: http://arxiv.org/abs/2412.03288v2
- Date: Fri, 06 Dec 2024 04:07:53 GMT
- Title: Searches for exotic spin-dependent interactions with spin sensors
- Authors: Min Jiang, Haowen Su, Yifan Chen, Man Jiao, Ying Huang, Yuanhong Wang, Xing Rong, Xinhua Peng, Jiangfeng Du,
- Abstract summary: Numerous theories have postulated the existence of exotic spin-dependent interactions beyond the Standard Model of particle physics.
Spin-based quantum sensors utilize the quantum properties of spins to enhance measurement precision.
Spin-based sensors stand out for their ultrahigh sensitivity, compact tabletop design, and cost-effectiveness.
- Score: 9.119883954622745
- License:
- Abstract: Numerous theories have postulated the existence of exotic spin-dependent interactions beyond the Standard Model of particle physics. Spin-based quantum sensors, which utilize the quantum properties of spins to enhance measurement precision, emerge as powerful tools for probing these exotic interactions. These sensors encompass a wide range of technologies, such as optically pumped magnetometers, atomic comagnetometers, spin masers, nuclear magnetic resonance, spin amplifiers, and nitrogen-vacancy centers. These technologies stand out for their ultrahigh sensitivity, compact tabletop design, and cost-effectiveness, offering complementary approaches to the large-scale particle colliders and astrophysical observations. This article reviews the underlying physical principles of various spin sensors and highlights the recent theoretical and experimental progress in the searches for exotic spin-dependent interactions with these quantum sensors. Investigations covered include the exotic interactions of spins with ultralight dark matter, exotic spin-dependent forces, electric dipole moment, spin-gravity interactions, and among others. Ongoing and forthcoming experiments using advanced spin-based sensors to investigate exotic spin-dependent interactions are discussed.
Related papers
- Spin-dependent exotic interactions [4.843592441369881]
Novel interactions beyond the four known fundamental forces in nature may arise due to "new physics" beyond the standard model, manifesting as a "fifth force"
This review is focused on spin-dependent fifth forces mediated by exotic bosons such as spin-0 axions and axionlike particles and spin-1 Z' bosons, dark photons, or paraphotons.
arXiv Detail & Related papers (2024-08-28T10:28:36Z) - Exotic Spin-dependent Energy-level Shift Noise Induced by Thermal Motion [7.890042560497392]
We introduce a theoretical model based on thermal motion of particles to search for exotic spin-dependent interactions.
The resulting exotic energy-level shift noise could be sensed by high-sensitivity instruments.
This model can be easily applied in other fields of quantum sensing, such as atomic clocks, atom interferometers and NV-diamond sensors.
arXiv Detail & Related papers (2024-01-11T12:12:43Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
Experimental methods and technologies developed for quantum information science have rapidly advanced in recent years.
Spin-based quantum sensors can be used to search for myriad phenomena.
Spin-based quantum sensors offer a methodology for tests of fundamental physics that is complementary to particle colliders and large scale particle detectors.
arXiv Detail & Related papers (2022-03-17T17:36:48Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Spin-mechanics with nitrogen-vacancy centers and trapped particles [0.0]
We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state.
Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that will enable these systems to unleash their full potential.
arXiv Detail & Related papers (2021-04-20T20:43:24Z) - Search for exotic spin-dependent interactions with a spin-based
amplifier [6.561459339607202]
We show a search for exotic spin- and velocity-dependent interactions with a spin-based amplifier.
Our limits represent at least two orders of magnitude improvement compared to previous experiments.
arXiv Detail & Related papers (2021-03-29T02:32:35Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.