論文の概要: Evaluating Model Robustness Using Adaptive Sparse L0 Regularization
- arxiv url: http://arxiv.org/abs/2408.15702v1
- Date: Wed, 28 Aug 2024 11:02:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:10:57.784729
- Title: Evaluating Model Robustness Using Adaptive Sparse L0 Regularization
- Title(参考訳): 適応スパースL0正規化を用いたモデルロバストネスの評価
- Authors: Weiyou Liu, Zhenyang Li, Weitong Chen,
- Abstract要約: 敵の例は、機能の最小限のサブセットを変更することで、既存の防御に挑戦します。
現在のL0標準攻撃手法は、精度と効率のトレードオフに直面している。
本稿では,L0ノルムを基準として,新たな,スケーラブルで効果的な逆例生成手法を提案する。
- 参考スコア(独自算出の注目度): 5.772716337390152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks have demonstrated remarkable success in various domains but remain susceptible to adversarial examples, which are slightly altered inputs designed to induce misclassification. While adversarial attacks typically optimize under Lp norm constraints, attacks based on the L0 norm, prioritising input sparsity, are less studied due to their complex and non convex nature. These sparse adversarial examples challenge existing defenses by altering a minimal subset of features, potentially uncovering more subtle DNN weaknesses. However, the current L0 norm attack methodologies face a trade off between accuracy and efficiency either precise but computationally intense or expedient but imprecise. This paper proposes a novel, scalable, and effective approach to generate adversarial examples based on the L0 norm, aimed at refining the robustness evaluation of DNNs against such perturbations.
- Abstract(参考訳): ディープ・ニューラル・ニューラルネットワークは、様々な領域で顕著な成功を収めてきたが、相変わらず誤分類を誘発するためにわずかに変化した入力である敵の例に影響を受けやすいままである。
逆攻撃は通常Lpノルム制約の下で最適化されるが、L0ノルムに基づく攻撃は、その複雑で非凸性のため、入力空間を優先する。
これらのまばらな敵の例は、最小限の機能のサブセットを変更し、より微妙なDNNの弱点を明らかにすることによって、既存の防御に挑戦する。
しかし、現在のL0ノルム攻撃手法は精度と効率のトレードオフに直面している。
本稿では,このような摂動に対するDNNのロバスト性評価を改良することを目的とした,L0ノルムに基づく新たな,スケーラブルで効果的な手法を提案する。
関連論文リスト
- Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
深層ニューラルネットワークは、人間の知覚できない敵のノイズを自然の例に付加する敵の例を予測するときに、誤分類が起こる。
textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)を提案する。
LFRCは、潜在空間における逆例の関係を、自然例と整合性に制約する。
論文 参考訳(メタデータ) (2023-03-29T13:50:01Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
ディープニューラルネットワーク(DNN)の堅牢性を改善するために、AT(Adversarial Training)がよく用いられる。
本研究では,ジャコビアンノルムと選択的入力勾配正規化(J-SIGR)に基づくアプローチを提案する。
実験により、提案したJ-SIGRは、転送された敵攻撃に対するロバスト性を向上し、ニューラルネットワークからの予測が容易に解釈できることが示されている。
論文 参考訳(メタデータ) (2022-07-09T01:06:41Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Robust Regularization with Adversarial Labelling of Perturbed Samples [22.37046166576859]
本稿では、正規化手法として、ALPS(Adversarial Labelling of Perturbed Samples)を提案する。
ALPSはニューラルネットワークを、それぞれの真正な入力サンプルを、逆向きに割り当てられたラベルとともに、別のものに向かって摂動することによって形成された合成サンプルで訓練する。
SVHN、CIFAR-10、CIFAR-100、Tiny-ImageNetのデータセットによる実験は、ALPSが最先端の正規化性能を持っていることを示している。
論文 参考訳(メタデータ) (2021-05-28T11:26:49Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
ディープラーニングアルゴリズムは最近、脆弱性のために攻撃者がターゲットとしている。
非連続的深層モデルは、いまだに敵対的な攻撃に対して頑健ではない。
本稿では,特徴を特定のマージン下に置くことによって予測を容易にする新しい目的/損失関数を提案する。
論文 参考訳(メタデータ) (2020-12-08T20:51:43Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。