論文の概要: Advanced POD-Based Performance Evaluation of Classifiers Applied to Human Driver Lane Changing Prediction
- arxiv url: http://arxiv.org/abs/2408.15722v1
- Date: Wed, 28 Aug 2024 11:39:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:10:57.762090
- Title: Advanced POD-Based Performance Evaluation of Classifiers Applied to Human Driver Lane Changing Prediction
- Title(参考訳): ドライバーレーン変更予測に応用した分類器の性能評価
- Authors: Zahra Rastin, Dirk Söffker,
- Abstract要約: 本稿では、機械学習アルゴリズムの信頼性を評価するために、修正された検出の確率を用いる。
PODに対するヒット/ミスアプローチの信頼性を高めるという利点を生かして、平均的な保守的な振る舞いを提供する。
- 参考スコア(独自算出の注目度): 2.8084422332394428
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) classifiers serve as essential tools facilitating classification and prediction across various domains. The performance of these algorithms should be known to ensure their reliable application. In certain fields, receiver operating characteristic and precision-recall curves are frequently employed to assess machine learning algorithms without accounting for the impact of process parameters. However, it may be essential to evaluate the performance of these algorithms in relation to such parameters. As a performance evaluation metric capable of considering the effects of process parameters, this paper uses a modified probability of detection (POD) approach to assess the reliability of ML-based algorithms. As an example, the POD-based approach is employed to assess ML models used for predicting the lane changing behavior of a vehicle driver. The time remaining to the predicted (and therefore unknown) lane changing event is considered as process parameter. The hit/miss approach to POD is taken here and modified by considering the probability of lane changing derived from ML algorithms at each time step, and obtaining the final result of the analysis accordingly. This improves the reliability of results compared to the standard hit/miss approach, which considers the outcome of the classifiers as either 0 or 1, while also simplifying evaluation compared to the \^a versus a approach. Performance evaluation results of the proposed approach are compared with those obtained with the standard hit/miss approach and a pre-developed \^a versus a approach to validate the effectiveness of the proposed method. The comparison shows that this method provides an averaging conservative behavior with the advantage of enhancing the reliability of the hit/miss approach to POD while retaining its simplicity.
- Abstract(参考訳): 機械学習(ML)分類器は、様々な領域にまたがる分類と予測を容易にする重要なツールである。
これらのアルゴリズムのパフォーマンスは、信頼性の高いアプリケーションを保証するために知っておくべきです。
ある分野では、プロセスパラメータの影響を考慮せずに機械学習アルゴリズムを評価するために、レシーバ動作特性と精度-リコール曲線が頻繁に使用される。
しかし,これらのパラメータに関して,これらのアルゴリズムの性能を評価することは重要である。
本稿では,プロセスパラメータの影響を考慮可能な性能評価指標として,MLアルゴリズムの信頼性を評価するために,修正された検出確率(POD)アプローチを用いる。
例として、車両運転手の車線変化挙動を予測するために使用されるMLモデルを評価するために、PODベースのアプローチを用いる。
予測された(従って未知の)レーン変更イベントに残る時間はプロセスパラメータとして考慮される。
MLアルゴリズムから導出される車線変化の確率を各タイミングで考慮し、解析の最終結果を得ることにより、PODに対するヒット・ミスアプローチを取り、修正する。
これにより、標準ヒット/ミスアプローチと比較して結果の信頼性が向上し、分類器の結果を 0 または 1 のいずれかとみなすとともに、アプローチに対する \^a と比較して評価が簡単になる。
提案手法の有効性を検証するために, 提案手法の性能評価結果を, 標準ヒット/ミス法と事前開発した \^a と比較した。
本手法は, 簡易性を保ちながら, PODに対するヒット・ミス・アプローチの信頼性を高めることの利点を生かして, 保守的行動を平均化することを示す。
関連論文リスト
- Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - A Semiparametric Instrumented Difference-in-Differences Approach to
Policy Learning [2.1989182578668243]
本稿では,最適な治療方針を学習するための汎用機器差分差分法(DiD)アプローチを提案する。
具体的には、並列傾向仮定が成立しない場合、二進楽器変数(IV)を用いて識別結果を確立する。
また、ウォルド推定器、新しい逆確率推定器、半効率的で乗算的な頑健な推定器のクラスを構築する。
論文 参考訳(メタデータ) (2023-10-14T09:38:32Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation [44.53678257757108]
目的関数の大域的最適値にサブ線形収束できる新しいBO法を提案する。
本手法では,BOプロセスにランダムなデータポイントを追加するために,マルチアームバンディット法 (EXP3) を用いる。
提案手法は, 様々な合成および実世界の問題に対して, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-12T03:35:45Z) - Predictive change point detection for heterogeneous data [1.1720726814454114]
予測と比較」は、予測機械学習モデルによって支援される変化点検出フレームワークである。
オンラインCDDルーチンでは、偽陽性率と制御不能な平均ランの長さでパフォーマンスが向上する。
この手法のパワーはトライボロジーのケーススタディで実証されている。
論文 参考訳(メタデータ) (2023-05-11T07:59:18Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
変分スパースガウス過程(GP)を用いた線形ラプラス近似(LLA)の近似法を提案する。
本手法はGPの2つのRKHSの定式化に基づいており、予測平均として元のDNNの出力を保持する。
効率のよい最適化が可能で、結果としてトレーニングデータセットのサイズのサブ線形トレーニング時間が短縮される。
論文 参考訳(メタデータ) (2023-02-24T10:32:30Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
観測データセットからの因果推論は、しばしば共変量の測定と調整に依存する。
このロバストな最適化手法により、広範囲な因果調整法を拡張し、部分的同定を行うことができることを示す。
合成および実データセット全体で、このアプローチは既存の手法よりも高いカバレッジ確率でATEバウンダリを提供する。
論文 参考訳(メタデータ) (2022-02-22T04:24:26Z) - Scalable Cross Validation Losses for Gaussian Process Models [22.204619587725208]
線形および多クラス分類に適応するために,Polya-Gamma補助変数と変分推論を用いる。
提案手法は,高速トレーニングと優れた予測性能を実現する。
論文 参考訳(メタデータ) (2021-05-24T21:01:47Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Variance Penalized On-Policy and Off-Policy Actor-Critic [60.06593931848165]
本稿では,平均値と変動値の両方を含むパフォーマンス基準を最適化する,オン・ポリティィおよびオフ・ポリティィ・アクター・クリティカルなアルゴリズムを提案する。
提案手法は, アクタ批判的かつ事前の分散-ペナライゼーションベースラインに匹敵するだけでなく, リターンのばらつきが低いトラジェクトリも生成する。
論文 参考訳(メタデータ) (2021-02-03T10:06:16Z) - Efficient Policy Learning from Surrogate-Loss Classification Reductions [65.91730154730905]
本稿では,政策学習におけるサロゲート-ロス分類の重み付けによる推定問題について考察する。
適切な仕様の仮定の下では、重み付けされた分類定式化はポリシーパラメーターに対して効率的でないことが示される。
本稿では,ポリシーパラメータに対して効率的なモーメントの一般化手法に基づく推定手法を提案する。
論文 参考訳(メタデータ) (2020-02-12T18:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。