論文の概要: TCNFormer: Temporal Convolutional Network Former for Short-Term Wind Speed Forecasting
- arxiv url: http://arxiv.org/abs/2408.15737v1
- Date: Tue, 27 Aug 2024 15:35:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:00:49.905139
- Title: TCNFormer: Temporal Convolutional Network Former for Short-Term Wind Speed Forecasting
- Title(参考訳): TCNFormer: 短期風速予測のための時間的畳み込みネットワーク
- Authors: Abid Hasan Zim, Aquib Iqbal, Asad Malik, Zhicheng Dong, Hanzhou Wu,
- Abstract要約: 本研究は,短期(12時間)の風速予測のための時間的コンテンポラル前駆体 (TCNFormer) を提案する。
以上の結果から,TNFormerは予測精度において最先端モデルよりも優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 9.47727784069628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Global environmental challenges and rising energy demands have led to extensive exploration of wind energy technologies. Accurate wind speed forecasting (WSF) is crucial for optimizing wind energy capture and ensuring system stability. However, predicting wind speed remains challenging due to its inherent randomness, fluctuation, and unpredictability. This study proposes the Temporal Convolutional Network Former (TCNFormer) for short-term (12-hour) wind speed forecasting. The TCNFormer integrates the Temporal Convolutional Network (TCN) and transformer encoder to capture the spatio-temporal features of wind speed. The transformer encoder consists of two distinct attention mechanisms: causal temporal multi-head self-attention (CT-MSA) and temporal external attention (TEA). CT-MSA ensures that the output of a step derives only from previous steps, i.e., causality. Locality is also introduced to improve efficiency. TEA explores potential relationships between different sample sequences in wind speed data. This study utilizes wind speed data from the NASA Prediction of Worldwide Energy Resources (NASA POWER) of Patenga Sea Beach, Chittagong, Bangladesh (latitude 22.2352{\deg} N, longitude 91.7914{\deg} E) over a year (six seasons). The findings indicate that the TCNFormer outperforms state-of-the-art models in prediction accuracy. The proposed TCNFormer presents a promising method for spatio-temporal WSF and may achieve desirable performance in real-world applications of wind power systems.
- Abstract(参考訳): 地球環境問題とエネルギー需要の増大は、風力エネルギー技術の広範な探査に繋がった。
風速予測(WSF)は,風力の捕捉を最適化し,システムの安定性を確保するために重要である。
しかし、風速の予測は、その固有のランダム性、変動、予測不可能性のため、依然として困難である。
本研究では,短期(12時間)の風速予測のためのTCNFormerを提案する。
TCNFormerは、時空間畳み込みネットワーク(TCN)とトランスフォーマーエンコーダを統合し、風速の時空間特性を捉える。
トランスコーダは、因果的側頭多頭自己注意(CT-MSA)と時間的外的注意(TEA)の2つの異なる注意機構から構成される。
CT-MSAは、ステップの出力が前のステップ、すなわち因果性のみに由来することを保証します。
また、効率を向上させるために地域性も導入されている。
TEAは、風速データにおける異なるサンプルシーケンス間の潜在的な関係を探索する。
この研究は、バングラデシュのパテンガ海浜にあるNASA POWER(NASA Prediction of Worldwide Energy Resources)の風速データ(緯度22.2352{\deg} N、経度91.7914{\deg} E)を1年(6シーズン)に利用した。
以上の結果から,TNFormerは予測精度において最先端モデルよりも優れていたことが示唆された。
提案したTNFormer は時空間 WSF の有望な提案手法であり,風力発電システムの実環境への適用において望ましい性能を実現することができる。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Typhoon Intensity Prediction with Vision Transformer [51.84456610977905]
台風強度を正確に予測するために「台風強度変換器(Tint)」を導入する。
Tintは、層ごとにグローバルな受容野を持つ自己認識機構を使用する。
公開されている台風ベンチマークの実験は、Tintの有効性を検証する。
論文 参考訳(メタデータ) (2023-11-28T03:11:33Z) - Ultra-short-term multi-step wind speed prediction for wind farms based on adaptive noise reduction technology and temporal convolutional network [0.0]
本研究では、データノイズ低減技術、時間畳み込みネットワーク(TCN)、ゲートリカレントユニット(GRU)に基づく新しい風速予測モデルを提案する。
提案モデルは山東省の3つの風力発電所で検証された。
論文 参考訳(メタデータ) (2023-11-27T03:53:19Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
風力発電は、再生可能、汚染のないその他の利点により、世界中の注目を集めている。
正確な風力発電予測(WPF)は、電力系統の運用における電力変動を効果的に低減することができる。
既存の手法は主に短期的な予測のために設計されており、効果的な時空間的特徴増強が欠如している。
論文 参考訳(メタデータ) (2023-05-30T04:03:15Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - Enhancing Short-Term Wind Speed Forecasting using Graph Attention and
Frequency-Enhanced Mechanisms [17.901334082943077]
GFST-WSFは、時間的特徴抽出のためのトランスフォーマーアーキテクチャと空間的特徴抽出のためのグラフ注意ネットワーク(GAT)を備える。
GATは風速局間の複雑な空間的依存関係を捉えるように設計されている。
地理的要因による隣接する風力発電所間の風速相関のモデル時間ラグ
論文 参考訳(メタデータ) (2023-05-19T08:50:58Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
本稿では,ディープラーニングを通じて事前学習した表現を組み込むことで,オンラインでの迅速な適応を可能にする学習ベースのアプローチを提案する。
Neural-Flyは、最先端の非線形かつ適応的なコントローラよりもかなり少ないトラッキングエラーで正確な飛行制御を実現する。
論文 参考訳(メタデータ) (2022-05-13T21:55:28Z) - Spatio-temporal estimation of wind speed and wind power using machine
learning: predictions, uncertainty and technical potential [0.0]
ここで提示される風力推定は、風力発電量の増加を伴うエネルギーシステムの設計を支援するためのプランナーにとって重要な入力である。
この手法は、スイスのハブ高さ100メートルのタービンに対して250ドル(約2,400円)のグリッド上の時間風力ポテンシャルの研究に応用される。
論文 参考訳(メタデータ) (2021-07-29T09:52:36Z) - Wind Speed Prediction and Visualization Using Long Short-Term Memory
Networks (LSTM) [1.8495489370732452]
本稿では,風力発電計画と実現可能性研究を簡易化する風速予測手法を提案する。
その結果、長期記憶(LSTM)は97.8%の精度で他のモデルより優れていることが判明した。
論文 参考訳(メタデータ) (2020-05-22T17:51:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。