Emulating Brain-like Rapid Learning in Neuromorphic Edge Computing
- URL: http://arxiv.org/abs/2408.15800v1
- Date: Wed, 28 Aug 2024 13:51:52 GMT
- Title: Emulating Brain-like Rapid Learning in Neuromorphic Edge Computing
- Authors: Kenneth Stewart, Michael Neumeier, Sumit Bam Shrestha, Garrick Orchard, Emre Neftci,
- Abstract summary: Digital neuromorphic technology simulates the neural and synaptic processes of the brain using two stages of learning.
We demonstrate our approach using event-driven vision sensor data and the Intel Loihi neuromorphic processor with its plasticity dynamics.
Our methodology can be deployed with arbitrary plasticity models and can be applied to situations demanding quick learning and adaptation at the edge.
- Score: 3.735012564657653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving personalized intelligence at the edge with real-time learning capabilities holds enormous promise in enhancing our daily experiences and helping decision making, planning, and sensing. However, efficient and reliable edge learning remains difficult with current technology due to the lack of personalized data, insufficient hardware capabilities, and inherent challenges posed by online learning. Over time and across multiple developmental stages, the brain has evolved to efficiently incorporate new knowledge by gradually building on previous knowledge. In this work, we emulate the multiple stages of learning with digital neuromorphic technology that simulates the neural and synaptic processes of the brain using two stages of learning. First, a meta-training stage trains the hyperparameters of synaptic plasticity for one-shot learning using a differentiable simulation of the neuromorphic hardware. This meta-training process refines a hardware local three-factor synaptic plasticity rule and its associated hyperparameters to align with the trained task domain. In a subsequent deployment stage, these optimized hyperparameters enable fast, data-efficient, and accurate learning of new classes. We demonstrate our approach using event-driven vision sensor data and the Intel Loihi neuromorphic processor with its plasticity dynamics, achieving real-time one-shot learning of new classes that is vastly improved over transfer learning. Our methodology can be deployed with arbitrary plasticity models and can be applied to situations demanding quick learning and adaptation at the edge, such as navigating unfamiliar environments or learning unexpected categories of data through user engagement.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Learning-to-learn enables rapid learning with phase-change memory-based in-memory computing [38.34244217803562]
A growing demand for low-power, autonomously learning artificial intelligence (AI) systems can be applied at the edge and rapidly adapt to the specific situation at deployment site.
In this work, we pair L2L with in-memory computing neuromorphic hardware to build efficient AI models that can rapidly adapt to new tasks.
We demonstrate the versatility of our approach in two scenarios: a convolutional neural network performing image classification and a biologically-inspired spiking neural network generating motor commands for a real robotic arm.
arXiv Detail & Related papers (2024-04-22T15:03:46Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Meta-Learning in Spiking Neural Networks with Reward-Modulated STDP [2.179313476241343]
We propose a bio-plausible meta-learning model inspired by the hippocampus and the prefrontal cortex.
Our new model can easily be applied to spike-based neuromorphic devices and enables fast learning in neuromorphic hardware.
arXiv Detail & Related papers (2023-06-07T13:08:46Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
We use a variant of deep generative models called - CycleGAN, to learn the unknown mapping between pre- and post-learning neural activities.
We develop an end-to-end pipeline to preprocess, train and evaluate calcium fluorescence signals, and a procedure to interpret the resulting deep learning models.
arXiv Detail & Related papers (2021-11-25T13:24:19Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning [4.2903672492917755]
We develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation.
We demonstrate the efficacy of our approach on both single task and continual learning setting.
arXiv Detail & Related papers (2020-07-16T07:41:23Z) - Brain-inspired global-local learning incorporated with neuromorphic
computing [35.70151531581922]
We report a neuromorphic hybrid learning model by introducing a brain-inspired meta-learning paradigm and a differentiable spiking model incorporating neuronal dynamics and synaptic plasticity.
We demonstrate the advantages of this model in multiple different tasks, including few-shot learning, continual learning, and fault-tolerance learning in neuromorphic vision sensors.
arXiv Detail & Related papers (2020-06-05T04:24:19Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too.
This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neuro-robotics.
arXiv Detail & Related papers (2020-03-23T14:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.