Object Detection for Vehicle Dashcams using Transformers
- URL: http://arxiv.org/abs/2408.15809v1
- Date: Wed, 28 Aug 2024 14:08:24 GMT
- Title: Object Detection for Vehicle Dashcams using Transformers
- Authors: Osama Mustafa, Khizer Ali, Anam Bibi, Imran Siddiqi, Momina Moetesum,
- Abstract summary: We propose a novel approach for object detection in dashcams using transformers.
Our system is based on the state-of-the-art DEtection TRansformer (DETR)
Our results show that the use of intelligent automation through transformers can significantly enhance the capabilities of dashcam systems.
- Score: 2.3243389656894595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of intelligent automation is growing significantly in the automotive industry, as it assists drivers and fleet management companies, thus increasing their productivity. Dash cams are now been used for this purpose which enables the instant identification and understanding of multiple objects and occurrences in the surroundings. In this paper, we propose a novel approach for object detection in dashcams using transformers. Our system is based on the state-of-the-art DEtection TRansformer (DETR), which has demonstrated strong performance in a variety of conditions, including different weather and illumination scenarios. The use of transformers allows for the consideration of contextual information in decisionmaking, improving the accuracy of object detection. To validate our approach, we have trained our DETR model on a dataset that represents real-world conditions. Our results show that the use of intelligent automation through transformers can significantly enhance the capabilities of dashcam systems. The model achieves an mAP of 0.95 on detection.
Related papers
- AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Real-time Traffic Object Detection for Autonomous Driving [5.780326596446099]
Modern computer vision techniques tend to prioritize accuracy over efficiency.
Existing object detectors are far from being real-time.
We propose a more suitable alternative that incorporates real-time requirements.
arXiv Detail & Related papers (2024-01-31T19:12:56Z) - Efficient Vision Transformer for Accurate Traffic Sign Detection [0.0]
This research paper addresses the challenges associated with traffic sign detection in self-driving vehicles and driver assistance systems.
It introduces the application of the Transformer model, particularly the Vision Transformer variants, to tackle this task.
To enhance the efficiency of the Transformer model, the research proposes a novel strategy that integrates a locality inductive bias and a transformer module.
arXiv Detail & Related papers (2023-11-02T17:44:32Z) - Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
We propose a threat detection mechanism for autonomous self-driving cars using dashcam videos.
There are four major components, namely, YOLO to identify the objects, advanced lane detection algorithm, multi regression model to measure the distance of the object from the camera.
The final accuracy of our proposed Threat Detection Model (TDM) is 82.65%.
arXiv Detail & Related papers (2022-09-06T12:01:07Z) - Enhanced Vehicle Re-identification for ITS: A Feature Fusion approach
using Deep Learning [0.0]
Vehicle re-identification has gained interest in the domain of computer vision and robotics.
In this paper, a framework is developed to perform the re-identification of vehicles across CCTV cameras.
The framework is tested on a dataset that contains 81 unique vehicle identities observed across 20 CCTV cameras.
arXiv Detail & Related papers (2022-08-13T05:59:16Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - A Quality Index Metric and Method for Online Self-Assessment of
Autonomous Vehicles Sensory Perception [164.93739293097605]
We propose a novel evaluation metric, named as the detection quality index (DQI), which assesses the performance of camera-based object detection algorithms.
We have developed a superpixel-based attention network (SPA-NET) that utilizes raw image pixels and superpixels as input to predict the proposed DQI evaluation metric.
arXiv Detail & Related papers (2022-03-04T22:16:50Z) - Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial
Examples Against Traffic Sign Recognition Systems [10.310327880799017]
Adversarial Examples (AEs) can deceive Deep Neural Networks (DNNs)
In this paper, we propose a systematic pipeline to generate robust physical AEs against real-world object detectors.
Experiments show that the physical AEs generated from our pipeline are effective and robust when attacking the YOLO v5 based Traffic Sign Recognition system.
arXiv Detail & Related papers (2022-01-17T03:24:31Z) - ViDT: An Efficient and Effective Fully Transformer-based Object Detector [97.71746903042968]
Detection transformers are the first fully end-to-end learning systems for object detection.
vision transformers are the first fully transformer-based architecture for image classification.
In this paper, we integrate Vision and Detection Transformers (ViDT) to build an effective and efficient object detector.
arXiv Detail & Related papers (2021-10-08T06:32:05Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.