論文の概要: Disentangled Diffusion Autoencoder for Harmonization of Multi-site Neuroimaging Data
- arxiv url: http://arxiv.org/abs/2408.15890v1
- Date: Wed, 28 Aug 2024 16:03:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 15:31:11.265351
- Title: Disentangled Diffusion Autoencoder for Harmonization of Multi-site Neuroimaging Data
- Title(参考訳): 多地点ニューロイメージングデータの高調波化のための遠方拡散オートエンコーダ
- Authors: Ayodeji Ijishakin, Ana Lawry Aguila, Elizabeth Levitis, Ahmed Abdulaal, Andre Altmann, James Cole,
- Abstract要約: 本稿では、画像の特定の側面を制御するために設計された新しい拡散モデルDDAEを紹介する。
従来の手法に比べて高分解能・高調波2次元MR画像の生成におけるDDAEの優位性を示す。
- 参考スコア(独自算出の注目度): 2.0431315722693344
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Combining neuroimaging datasets from multiple sites and scanners can help increase statistical power and thus provide greater insight into subtle neuroanatomical effects. However, site-specific effects pose a challenge by potentially obscuring the biological signal and introducing unwanted variance. Existing harmonization techniques, which use statistical models to remove such effects, have been shown to incompletely remove site effects while also failing to preserve biological variability. More recently, generative models using GANs or autoencoder-based approaches, have been proposed for site adjustment. However, such methods are known for instability during training or blurry image generation. In recent years, diffusion models have become increasingly popular for their ability to generate high-quality synthetic images. In this work, we introduce the disentangled diffusion autoencoder (DDAE), a novel diffusion model designed for controlling specific aspects of an image. We apply the DDAE to the task of harmonizing MR images by generating high-quality site-adjusted images that preserve biological variability. We use data from 7 different sites and demonstrate the DDAE's superiority in generating high-resolution, harmonized 2D MR images over previous approaches. As far as we are aware, this work marks the first diffusion-based model for site adjustment of neuroimaging data.
- Abstract(参考訳): 複数のサイトとスキャナーからのニューロイメージングデータセットを組み合わせることで、統計力を増大させ、微妙な神経解剖学的効果についてより深い洞察を与えることができる。
しかし、部位特異的な効果は、生物学的シグナルを隠蔽し、望ましくない分散を導入することで困難を生じさせる。
このような効果を除去するために統計モデルを用いた既存のハーモニゼーション技術は、生物学的多様性の維持に失敗しながら、不完全な部位効果を除去することが示されている。
近年,サイト調整のためのGANやオートエンコーダを用いた生成モデルが提案されている。
しかし、そのような手法はトレーニング中の不安定性やぼやけた画像生成で知られている。
近年、拡散モデルは高品質な合成画像を生成する能力で人気が高まっている。
本研究では,画像の特定の側面を制御するために設計された新しい拡散モデルである分散拡散オートエンコーダ(DDAE)を紹介する。
DDAEを生体の多様性を保った高品質なサイト調整画像を生成することでMR画像の調和作業に適用する。
我々は、7つの異なるサイトからのデータを用いて、従来のアプローチよりも高解像度で高調波化された2次元MR画像を生成するDDAEの優位性を実証する。
我々が知る限り、この研究は神経画像データのサイト調整のための初めての拡散モデルである。
関連論文リスト
- Ultrasound Image Enhancement with the Variance of Diffusion Models [7.360352432782388]
超音波画像の強調にはコントラスト、解像度、スペックル保存の微妙なバランスが必要である。
本稿では,適応ビームフォーミングと拡散型分散イメージングを併用した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T17:29:33Z) - Diffusion based multi-domain neuroimaging harmonization method with preservation of anatomical details [0.0]
マルチセンター・ニューロイメージング研究は、サイト間のバッチ差による技術的変動に直面している。
GAN(Generative Adversarial Networks)は、画像調和タスクに対処するための重要な手法である。
我々は神経画像調和のための拡散モデルの有効性を評価した。
論文 参考訳(メタデータ) (2024-09-01T18:54:00Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
本稿では拡散生成画像検出(SeDID)のためのステップワイド誤差と呼ばれる新しい検出法を提案する。
SeDIDは拡散モデルのユニークな特性、すなわち決定論的逆転と決定論的逆退誤差を利用する。
我々の研究は拡散モデル生成画像の識別に重要な貢献をしており、人工知能のセキュリティ分野における重要なステップとなっている。
論文 参考訳(メタデータ) (2023-07-12T16:16:37Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis [4.724009208755395]
高品質な病理画像合成のための視覚変換器(ViT)と拡散オートエンコーダを統合したViT-DAEを提案する。
提案手法は, 実写画像生成におけるGAN法とバニラDAE法より優れている。
論文 参考訳(メタデータ) (2023-04-03T15:00:06Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。