論文の概要: Generalized Naive Bayes
- arxiv url: http://arxiv.org/abs/2408.15923v1
- Date: Wed, 28 Aug 2024 16:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 15:21:26.816965
- Title: Generalized Naive Bayes
- Title(参考訳): 一般ナイーブベイズ
- Authors: Edith Alice Kovács, Anna Ország, Dániel Pfeifer, András Benczúr,
- Abstract要約: 我々は、ネイブベイズ構造の拡張として、いわゆる一般化ネイブベイズ構造を導入する。
古典的ネーブベイズ(NB)によって決定される確率分布と同様に、この値が少なくともデータに適合することを証明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper we introduce the so-called Generalized Naive Bayes structure as an extension of the Naive Bayes structure. We give a new greedy algorithm that finds a good fitting Generalized Naive Bayes (GNB) probability distribution. We prove that this fits the data at least as well as the probability distribution determined by the classical Naive Bayes (NB). Then, under a not very restrictive condition, we give a second algorithm for which we can prove that it finds the optimal GNB probability distribution, i.e. best fitting structure in the sense of KL divergence. Both algorithms are constructed to maximize the information content and aim to minimize redundancy. Based on these algorithms, new methods for feature selection are introduced. We discuss the similarities and differences to other related algorithms in terms of structure, methodology, and complexity. Experimental results show, that the algorithms introduced outperform the related algorithms in many cases.
- Abstract(参考訳): 本稿では,ネイブベイズ構造の拡張として,いわゆる一般化ネイブベイズ構造を紹介する。
我々は,GNB(Generalized Naive Bayes)確率分布に適合する新しいグリージーアルゴリズムを提案する。
これは、古典的ネーブベイズ(NB)によって決定される確率分布と同様に、少なくともデータに適合することを示す。
そして、あまり制限的でない条件下では、最適GNB確率分布、すなわちKLの発散という意味での最適適合構造を証明できる第2のアルゴリズムを与える。
両アルゴリズムは情報内容の最大化と冗長性の最小化を目的として構築されている。
これらのアルゴリズムに基づいて,特徴選択のための新しい手法が導入された。
我々は、構造、方法論、複雑さの観点から、他の関連するアルゴリズムとの類似点と相違点について論じる。
実験結果から, アルゴリズムの導入は, 多くの場合, 関連アルゴリズムよりも優れていることがわかった。
関連論文リスト
- On Policy Evaluation Algorithms in Distributional Reinforcement Learning [0.0]
分散強化学習(DRL)による政策評価問題における未知の回帰分布を効率的に近似する新しいアルゴリズムのクラスを導入する。
提案したアルゴリズムの単純な例では、ワッサーシュタインとコルモゴロフ-スミルノフ距離の両方において誤差境界を証明する。
確率密度関数を持つ戻り分布の場合、アルゴリズムはこれらの密度を近似し、誤差境界は上限ノルム内で与えられる。
論文 参考訳(メタデータ) (2024-07-19T10:06:01Z) - Optimal estimation of Gaussian (poly)trees [25.02920605955238]
分布学習(KL距離)と構造学習(正確な回復)の両問題を考察する。
最初のアプローチはChow-Liuアルゴリズムに基づいており、最適な木構造分布を効率的に学習する。
第2のアプローチは、制約に基づく構造学習のための条件付き独立試験器として部分相関を用いたポリツリーに対するPCアルゴリズムの修正である。
論文 参考訳(メタデータ) (2024-02-09T12:58:36Z) - Generalized Schrödinger Bridge Matching [54.171931505066]
一般化Schr"odinger Bridge (GSB) 問題設定は、機械学習の内外を問わず、多くの科学領域で一般的である。
我々は最近の進歩に触発された新しいマッチングアルゴリズムである一般化シュリンガーブリッジマッチング(GSBM)を提案する。
このような一般化は条件最適制御の解法として、変分近似を用いることができることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:42:11Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Hybrid Bayesian network discovery with latent variables by scoring
multiple interventions [5.994412766684843]
離散データから構造学習を行うためのハイブリッドmFGS-BSアルゴリズムを提案する。
このアルゴリズムは潜伏変数の存在下で因果不整合を仮定し、部分アンセストラルグラフ(PAG)を生成する。
実験の結果,mFGS-BSは最先端技術と比較して構造学習精度が向上し,計算効率が向上した。
論文 参考訳(メタデータ) (2021-12-20T14:54:41Z) - Bayesian decision-making under misspecified priors with applications to
meta-learning [64.38020203019013]
トンプソンサンプリングやその他のシーケンシャルな意思決定アルゴリズムは、文脈的包帯における探索と探索のトレードオフに取り組むための一般的なアプローチである。
性能は不特定な事前条件で優雅に低下することを示す。
論文 参考訳(メタデータ) (2021-07-03T23:17:26Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
一般ベイズ推論問題に対する2つの新しい分散VBアルゴリズムを提案する。
提案アルゴリズムは、核融合センターで利用可能な全データに依存する集中型VBアルゴリズムとほぼ同等の性能を有する。
論文 参考訳(メタデータ) (2020-11-27T08:12:18Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
本稿では,エッジファクター,非プロジェクティブ・スパンニングツリーモデルにおいて,一階期待と二階期待の重要なケースに対する統一アルゴリズムを提案する。
我々のアルゴリズムは勾配と期待の基本的な関係を利用しており、効率的なアルゴリズムを導出することができる。
論文 参考訳(メタデータ) (2020-08-29T14:58:26Z) - Differentiable TAN Structure Learning for Bayesian Network Classifiers [19.30562170076368]
本研究では,個別な入力特徴を持つベイズ型ネットワーク分類器に対する木拡大型ネーブベイズ構造(TAN)の学習について検討する。
提案手法は,可能なグラフ構造の空間上で最適化を行う代わりに,グラフ構造上の分布を学習する。
提案手法はランダムなTAN構造とChow-Liu TAN構造を一貫して上回る。
論文 参考訳(メタデータ) (2020-08-21T16:22:47Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。