Beating the Ramsey limit on sensing with deterministic qubit control
- URL: http://arxiv.org/abs/2408.15926v1
- Date: Wed, 28 Aug 2024 16:40:01 GMT
- Title: Beating the Ramsey limit on sensing with deterministic qubit control
- Authors: M. O. Hecht, Kumar Saurav, Evangelos Vlachos, Daniel A. Lidar, Eli M. Levenson-Falk,
- Abstract summary: We introduce a protocol for enhancing the sensitivity of a measurement of a qubit's frequency in the presence of decoherence.
We demonstrate our protocol on a superconducting qubit, enhancing SNR per measurement shot by 1.65$times$ and SNR per qubit evolution time by 1.09$times$.
- Score: 4.596249232904721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum sensors promise revolutionary advances in medical imaging, energy production, mass detection, geodesy, foundational physics research, and a host of other fields. In many sensors, the signal takes the form of a changing qubit frequency, which is detected with an interference measurement. Unfortunately, environmental noise decoheres the qubit state, reducing signal-to-noise ratio (SNR). Here we introduce a protocol for enhancing the sensitivity of a measurement of a qubit's frequency in the presence of decoherence. We use a continuous drive to stabilize one component of the qubit's Bloch vector, enhancing the effect of a small static frequency shift. We demonstrate our protocol on a superconducting qubit, enhancing SNR per measurement shot by 1.65$\times$ and SNR per qubit evolution time by 1.09$\times$ compared to standard Ramsey interferometry. We explore the protocol theoretically and numerically, finding maximum enhancements of 1.96$\times$ and 1.18$\times$, respectively. We also show that the protocol is robust to parameter miscalibrations. Our protocol provides an unconditional enhancement in signal-to-noise ratio compared to standard Ramsey interferometry. It requires no feedback and no extra control or measurement resources, and can be immediately applied in a wide variety of quantum computing and quantum sensor technologies to enhance their sensitivities.
Related papers
- Quantum enhanced distributed phase sensing with a truncated SU(1,1) interferometer [0.44475839286738167]
A network of entangled sensors can improve sensitivity beyond the shot noise limit, and enable a Heisenberg scaling with the number of sensors.
We experimentally demonstrate a quantum noise reduction of 1.7 dB and a classical 3 dB signal-to-noise ratio improvement over the separable sensing approach.
Our results pave the way for developing quantum enhanced sensor networks that can achieve an entanglement-enhanced sensitivity.
arXiv Detail & Related papers (2024-03-25T19:00:21Z) - System Characterization of Dispersive Readout in Superconducting Qubits [37.940693612514984]
We introduce a single protocol to measure the dispersive shift, resonator linewidth, and drive power used in the dispersive readout of superconducting qubits.
We find that the resonator linewidth is poorly controlled with a factor of 2 between the maximum and minimum measured values.
We also introduce a protocol for measuring the readout system efficiency using the same power levels as are used in typical qubit readout.
arXiv Detail & Related papers (2024-02-01T08:15:16Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Complete analysis of a realistic fiber-based quantum repeater scheme [0.8356833388425764]
We present a quantum repeater protocol for distributing entanglement over long distances.
The protocol leaves the emitters disentangled from the qubits and photons, thus allowing them to be reused to entangle other qubits.
It is important to reach a qubit memory coherence time of around one second, and two-qubit gate and measurement errors in the order of $10-3$ to obtain reasonable secret key rates over distances longer than achievable with direct transmission.
arXiv Detail & Related papers (2023-09-08T06:31:06Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
We demonstrate model-based readout optimization for superconducting qubits.
We observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons.
This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
arXiv Detail & Related papers (2023-08-03T23:30:56Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Enhancing the sensitivity of atom-interferometric inertial sensors using
robust control [0.0]
Operation in real-world environments is challenging due to external interference, platform noise, and constraints on size, weight, and power.
We show that tailored light pulses designed using robust control techniques mitigate significant error sources in an atom-interferometric accelerometer.
arXiv Detail & Related papers (2023-03-07T06:50:52Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Physics-informed compressed sensing for PC-MRI: an inverse Navier-Stokes
problem [78.20667552233989]
We formulate a physics-informed compressed sensing (PICS) method for the reconstruction of velocity fields from noisy and sparse magnetic resonance signals.
We find that the method is capable of reconstructing and segmenting the velocity fields from sparsely-sampled signals.
arXiv Detail & Related papers (2022-07-04T14:51:59Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Implementation of the SMART protocol for global qubit control in silicon [0.623014942746354]
We implement a new protocol to control a single spin microwave in a silicon quantum dot.
Universal control of a single qubit is demonstrated using Stark modulated shift control via the local gate.
This work shows that future scalable spin qubit arrays could be operated using global microwave control and local gate addressability.
arXiv Detail & Related papers (2021-08-02T12:46:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.