Q-MRS: A Deep Learning Framework for Quantitative Magnetic Resonance Spectra Analysis
- URL: http://arxiv.org/abs/2408.15999v1
- Date: Wed, 28 Aug 2024 18:05:53 GMT
- Title: Q-MRS: A Deep Learning Framework for Quantitative Magnetic Resonance Spectra Analysis
- Authors: Christopher J. Wu, Lawrence S. Kegeles, Jia Guo,
- Abstract summary: This study introduces a deep learning (DL) framework that employs transfer learning, in which the model is pre-trained on simulated datasets before it undergoes fine-tuning on in vivo data.
The proposed framework showed promising performance when applied to the Philips dataset from the BIG GABA repository.
- Score: 13.779430559468926
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Magnetic resonance spectroscopy (MRS) is an established technique for studying tissue metabolism, particularly in central nervous system disorders. While powerful and versatile, MRS is often limited by challenges associated with data quality, processing, and quantification. Existing MRS quantification methods face difficulties in balancing model complexity and reproducibility during spectral modeling, often falling into the trap of either oversimplification or over-parameterization. To address these limitations, this study introduces a deep learning (DL) framework that employs transfer learning, in which the model is pre-trained on simulated datasets before it undergoes fine-tuning on in vivo data. The proposed framework showed promising performance when applied to the Philips dataset from the BIG GABA repository and represents an exciting advancement in MRS data analysis.
Related papers
- Modal Analysis of Spatiotemporal Data via Multivariate Gaussian Process Regression [0.0]
Modal analysis has become an essential tool to understand the coherent structure of complex flows.
To overcome the limitations of data scarcity and irregular sampling, we propose a novel modal analysis technique.
arXiv Detail & Related papers (2024-03-19T19:47:02Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - A Multi-Resolution Physics-Informed Recurrent Neural Network:
Formulation and Application to Musculoskeletal Systems [1.978587235008588]
This work presents a physics-informed recurrent neural network (MR PI-RNN) for simultaneous prediction of musculoskeletal (MSK) motion.
The proposed method utilizes the fast wavelet transform to decompose the mixed frequency input sEMG and output joint motion signals into nested multi-resolution signals.
The framework is also capable of identifying muscle parameters that are physiologically consistent with the subject's kinematics data.
arXiv Detail & Related papers (2023-05-26T02:51:39Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
This study takes advantage of recent advances in machine learning to establish a physics-based data analytic platform.
Two logics, namely the direct inversion and physics-informed neural networks (PINNs), are explored.
arXiv Detail & Related papers (2023-01-06T05:01:05Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
We describe a pre-training technique that utilizes large datasets of 3D molecular structures at equilibrium.
Inspired by recent advances in noise regularization, our pre-training objective is based on denoising.
arXiv Detail & Related papers (2022-05-31T22:28:34Z) - Spatio-temporally separable non-linear latent factor learning: an
application to somatomotor cortex fMRI data [0.0]
Models of fMRI data that can perform whole-brain discovery of latent factors are understudied.
New methods for efficient spatial weight-sharing are critical to deal with the high dimensionality of the data and the presence of noise.
Our approach is evaluated on data with multiple motor sub-tasks to assess whether the model captures disentangled latent factors that correspond to each sub-task.
arXiv Detail & Related papers (2022-05-26T21:30:22Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Nonparametric posterior learning for emission tomography with multimodal
data [1.6500749121196991]
We adapt the recently proposed nonparametric posterior learning technique to the context of Poisson-type data in emission tomography.
We derive sampling algorithms which are trivially parallelizable, scalable and very easy to implement.
We show theoretically and numerically that such data augmentation significantly increases mixing times for the Markov chain.
arXiv Detail & Related papers (2021-07-29T12:43:02Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
Low-rank Multi-view Subspace Learning has shown great potential in cross-view classification in recent years.
Existing LMvSL based methods are incapable of well handling view discrepancy and discriminancy simultaneously.
We propose Structured Low-rank Matrix Recovery (SLMR), a unique method of effectively removing view discrepancy and improving discriminancy.
arXiv Detail & Related papers (2020-03-22T03:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.