論文の概要: Fairness, Accuracy, and Unreliable Data
- arxiv url: http://arxiv.org/abs/2408.16040v1
- Date: Wed, 28 Aug 2024 17:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 17:54:29.781440
- Title: Fairness, Accuracy, and Unreliable Data
- Title(参考訳): 公正さ、正確さ、信頼できないデータ
- Authors: Kevin Stangl,
- Abstract要約: 本論文は,機械学習の信頼性向上を目的とした3つの領域,機械学習の公正性,戦略的分類,アルゴリズム的堅牢性について考察する。
この論文全体のテーマは、古典的な学習理論の仮定と、野生におけるデータ分布の特定の性質とのミスマッチのため、平易な経験的リスク最小化アルゴリズムが誤解を招くか、効果がないかという方法を考えることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This thesis investigates three areas targeted at improving the reliability of machine learning; fairness in machine learning, strategic classification, and algorithmic robustness. Each of these domains has special properties or structure that can complicate learning. A theme throughout this thesis is thinking about ways in which a `plain' empirical risk minimization algorithm will be misleading or ineffective because of a mis-match between classical learning theory assumptions and specific properties of some data distribution in the wild. Theoretical understanding in eachof these domains can help guide best practices and allow for the design of effective, reliable, and robust systems.
- Abstract(参考訳): 本論文では,機械学習の信頼性向上を目的とした3つの領域,機械学習の公正性,戦略的分類,アルゴリズム的堅牢性について考察する。
これらのドメインはそれぞれ、学習を複雑にする特別な特性や構造を持っている。
経験的リスク最小化アルゴリズムが、古典的な学習理論の仮定と、野生におけるデータ分布の特定の性質のミスマッチのために、誤解を招くか、効果がないかという方法を考える。
これらのドメインのそれぞれに関する理論的理解は、ベストプラクティスをガイドし、効果的で信頼性があり、堅牢なシステムの設計を可能にする。
関連論文リスト
- Optimisation Strategies for Ensuring Fairness in Machine Learning: With and Without Demographics [4.662958544712181]
本稿では,機械学習フェアネスにおけるオープンな問題に対処するための2つの形式的枠組みを紹介する。
あるフレームワークでは、オペレータ値の最適化とmin-maxの目的が時系列問題の不正性に対処するために使用される。
第2のフレームワークでは、一般的に使用されるデータセットにおいて、性別や人種などのセンシティブな属性を欠くという課題に対処する。
論文 参考訳(メタデータ) (2024-11-13T22:29:23Z) - Pushing the Boundary: Specialising Deep Configuration Performance Learning [0.0]
この論文は、構成性能モデリングにおけるディープラーニング技術に関する体系的な文献レビューから始まる。
第一の知識のギャップは、どの符号化方式が優れているかについての理解の欠如である。
第二の知識ギャップは、構成のランドスケープから受け継がれた空間である。
論文 参考訳(メタデータ) (2024-07-02T22:59:19Z) - A Unified Framework for Human-Allied Learning of Probabilistic Circuits [9.153589597382082]
確率回路(PC)は、複雑な確率分布を表現および学習するための効率的なフレームワークとして登場した。
多様なドメイン知識をPCのパラメータ学習プロセスに統合できる新しい統合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-03T18:14:29Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
機械学習と自己整合フィールド法を統合して,検証コストの低減と解釈可能性の両立を実現する。
これにより、積極的学習によるモデルの能力の探索が可能となり、実際の研究への統合への信頼がもたらされる。
論文 参考訳(メタデータ) (2024-02-15T18:41:35Z) - Detecting and Learning Out-of-Distribution Data in the Open world:
Algorithm and Theory [15.875140867859209]
この論文は、特にオープンワールドシナリオのコンテキストにおいて、機械学習の領域に貢献する。
オープンワールド機械学習に不可欠な2つの段階:アウト・オブ・ディストリビューション(OOD)検出とオープンワールド表現学習(ORL)
論文 参考訳(メタデータ) (2023-10-10T00:25:21Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning [71.14237199051276]
経験的リスクを最小限に抑えるため,古典的な分布に依存しないフレームワークとアルゴリズムを検討する。
理想的な安定かつ正確なニューラルネットワークの計算と検証が極めて難しいタスク群が存在することを示す。
論文 参考訳(メタデータ) (2023-09-13T16:33:27Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Quantifying Epistemic Uncertainty in Deep Learning [15.494774321257939]
不確かさの定量化は、機械学習の信頼性と堅牢性の中核にある。
深層学習における不確実性,特にテクテプステミック成分を識別する理論的枠組みを提供する。
本稿では,これらの不確かさを推定する2つの手法を提案し,その1つは影響関数に基づくものであり,もう1つは変数に関するものである。
論文 参考訳(メタデータ) (2021-10-23T03:21:10Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。