Magic of the Heisenberg Picture
- URL: http://arxiv.org/abs/2408.16047v2
- Date: Tue, 24 Sep 2024 05:58:29 GMT
- Title: Magic of the Heisenberg Picture
- Authors: Neil Dowling, Pavel Kos, Xhek Turkeshi,
- Abstract summary: We study a non-stabilizerness resource theory for operators, which is dual to that describing states.
We identify that the stabilizer R'enyi entropy analog in operator space is a good magic monotone satisfying the usual conditions.
This monotone reveals structural properties of many-body magic generation, and can inspire Clifford-assisted tensor network methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magic quantifies the non-Clifford operations required for preparing a state on quantum processors and sets bounds on the classical computational complexity of simulating quantum dynamics. We study a non-stabilizerness resource theory for operators, which is dual to that describing states. We identify that the stabilizer R\'enyi entropy analog in operator space is a good magic monotone satisfying the usual conditions, while inheriting efficient computability properties and providing a tight lower-bound to the minimum number of non-Clifford gates in a circuit. It is operationally well-defined as quantifying how well one can approximate an operator with one that has only few Pauli strings; analogous to the relation between entanglement entropy and tensor-network truncation. An immediate advantage is that the operator stabilizer entropies exhibit inherent locality through a Lieb-Robinson bound, making them particularly suited for studying local dynamical magic generation in many-body systems. We compute this quantity analytically in two distinct regimes. First, we show that random evolution typically has approximately maximal magic in the Heisenberg picture for all R\'enyi indices, and evaluate the Page correction. Second, harnessing both dual unitarity and ZX graphical calculus, we compute the operator stabilizer entropy evolution for an interacting integrable XXZ circuit. In this case, magic quickly saturates to a constant. This monotone reveals structural properties of many-body magic generation, and can inspire Clifford-assisted tensor network methods.
Related papers
- An Exact Link between Nonlocal Magic and Operator Entanglement [0.0]
Nonstabilizerness, commonly referred to as magic, is a quantum property of states associated with the non-Clifford resources required for their preparation.
We establish an exact correspondence between the generation of nonlocal magic and operator entanglement under unitary evolutions.
arXiv Detail & Related papers (2025-04-12T22:40:04Z) - Scalable Equilibrium Sampling with Sequential Boltzmann Generators [60.00515282300297]
We extend the Boltzmann generator framework and introduce Sequential Boltzmann generators with two key improvements.
The first is a highly efficient non-equivariant Transformer-based normalizing flow operating directly on all-atom Cartesian coordinates.
We demonstrate the first equilibrium sampling in Cartesian coordinates of tri, tetra, and hexapeptides that were so far intractable for prior Boltzmann generators.
arXiv Detail & Related papers (2025-02-25T18:59:13Z) - Bridging Entanglement and Magic Resources through Operator Space [0.0]
We show that LOE is always upper-bound by three distinct magic monotones: $T$-count, unitary nullity, and operator stabilizer R'enyi entropy.
A direct corollary of our bounds is that any quantum chaotic dynamics cannot be simulated classically.
arXiv Detail & Related papers (2025-01-30T19:00:00Z) - Disentangling critical quantum spin chains with Clifford circuits [39.58317527488534]
Clifford circuits can be utilized to disentangle quantum state with cost, thanks to the Gottesman-Knill theorem.
Based on this idea, Clifford Circuits Augmented Matrix Product States ( CAMPS) was proposed recently and was shown to be able to reduce entanglement in various quantum systems.
In this work, we explore the power of CAMPS method in critical spin chains described by conformal field theories (CFTs) in the scaling limit.
arXiv Detail & Related papers (2024-11-19T17:39:54Z) - Gauge-Fixing Quantum Density Operators At Scale [0.0]
We provide theory, algorithms, and simulations of non-equilibrium quantum systems.
We analytically and numerically examine the virtual freedoms associated with the representation of quantum density operators.
arXiv Detail & Related papers (2024-11-05T22:56:13Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Stabilizer entropies are monotones for magic-state resource theory [0.0]
We establish the monotonicity of stabilizer entropies for $alpha geq 2$ within the context of magic-state resource theory restricted to pure states.
We extend stabilizer entropies to mixed states as monotones via convex roof constructions.
arXiv Detail & Related papers (2024-04-17T18:00:02Z) - Weak second-order quantum state diffusion unraveling of the Lindblad
master equation [0.0]
Simulating mixed-state evolution in open quantum systems is crucial for chemical physics, quantum optics, and computer science applications.
An alternative approach known as quantum state diffusion unraveling is based on the trajectories of pure states generated by random wave functions.
This study introduces weak first- and second-order solvers for the Ito-Schr"odinger equation (ISE)
arXiv Detail & Related papers (2024-01-22T16:46:00Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
An ideal state preparation protocol can be characterized by being easily generated classically.
We propose a method that meets these requirements by introducing a variant of the iterative qubit coupled cluster (iQCC)
We demonstrate the algorithm's correctness in ground-state simulations and extend our study to complex systems like the titanium-based compound Ti(C5H5)(CH3)3 with a (20, 20) active space.
arXiv Detail & Related papers (2022-11-18T20:31:10Z) - Fourier-based quantum signal processing [0.0]
Implementing general functions of operators is a powerful tool in quantum computation.
Quantum signal processing is the state of the art for this aim.
We present an algorithm for Hermitian-operator function design from an oracle given by the unitary evolution.
arXiv Detail & Related papers (2022-06-06T18:02:30Z) - Quantifying non-stabilizerness via information scrambling [0.6993026261767287]
A method to quantify quantum resources is to use a class of functions called magic monotones and stabilizer entropies.
We numerically show the relation of these sampled correlators to different non-stabilizerness measures for both qubit and qutrit systems.
We put forward and simulate a protocol to measure the monotonic behaviour of magic for the time evolution of local Hamiltonians.
arXiv Detail & Related papers (2022-04-24T10:12:47Z) - Stability of Neural Networks on Manifolds to Relative Perturbations [118.84154142918214]
Graph Neural Networks (GNNs) show impressive performance in many practical scenarios.
GNNs can scale well on large size graphs, but this is contradicted by the fact that existing stability bounds grow with the number of nodes.
arXiv Detail & Related papers (2021-10-10T04:37:19Z) - Simple and practical DIQKD security analysis via BB84-type uncertainty
relations and Pauli correlation constraints [0.0]
In this work, we describe how the conditional entropy can be bounded in the 2-input/2-output setting.
We illustrate the approach on a variant of the device-independent CHSH QKD protocol where both bases are used to generate the key.
arXiv Detail & Related papers (2021-07-19T14:08:43Z) - Better Regularization for Sequential Decision Spaces: Fast Convergence
Rates for Nash, Correlated, and Team Equilibria [121.36609493711292]
We study the application of iterative first-order methods to the problem of computing equilibria of large-scale two-player extensive-form games.
By instantiating first-order methods with our regularizers, we develop the first accelerated first-order methods for computing correlated equilibra and ex-ante coordinated team equilibria.
arXiv Detail & Related papers (2021-05-27T06:10:24Z) - Weighted slice rank and a minimax correspondence to Strassen's spectra [5.348876409230947]
Strassen's spectra program characterizes optimal matrix algorithms through monotone functionals.
Weighted slice rank encapsulates different notions of bipartiteness of quantum entanglement.
New characterization can be extended to all fields.
arXiv Detail & Related papers (2020-12-28T18:49:23Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.