Quantifying non-stabilizerness via information scrambling
- URL: http://arxiv.org/abs/2204.11236v5
- Date: Thu, 11 Jan 2024 15:30:27 GMT
- Title: Quantifying non-stabilizerness via information scrambling
- Authors: Arash Ahmadi, Eliska Greplova
- Abstract summary: A method to quantify quantum resources is to use a class of functions called magic monotones and stabilizer entropies.
We numerically show the relation of these sampled correlators to different non-stabilizerness measures for both qubit and qutrit systems.
We put forward and simulate a protocol to measure the monotonic behaviour of magic for the time evolution of local Hamiltonians.
- Score: 0.6993026261767287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of quantum technologies brought forward much attention to the
theoretical characterization of the computational resources they provide. A
method to quantify quantum resources is to use a class of functions called
magic monotones and stabilizer entropies, which are, however, notoriously hard
and impractical to evaluate for large system sizes. In recent studies, a
fundamental connection between information scrambling, the magic monotone mana
and 2-Renyi stabilizer entropy was established. This connection simplified
magic monotone calculation, but this class of methods still suffers from
exponential scaling with respect to the number of qubits. In this work, we
establish a way to sample an out-of-time-order correlator that approximates
magic monotones and 2-Renyi stabilizer entropy. We numerically show the
relation of these sampled correlators to different non-stabilizerness measures
for both qubit and qutrit systems and provide an analytical relation to 2-Renyi
stabilizer entropy. Furthermore, we put forward and simulate a protocol to
measure the monotonic behaviour of magic for the time evolution of local
Hamiltonians.
Related papers
- Magic of the Heisenberg Picture [0.0]
We study a non-stabilizerness resource theory for operators, which is dual to that describing states.
We identify that the stabilizer R'enyi entropy analog in operator space is a good magic monotone satisfying the usual conditions.
This monotone reveals structural properties of many-body magic generation, and can inspire Clifford-assisted tensor network methods.
arXiv Detail & Related papers (2024-08-28T18:00:01Z) - Mutual information fluctuations and non-stabilizerness in random circuits [0.48212500317840945]
We show a simple relationship between non-stabilizerness and information scrambling.
We explore the role of non-stabilizerness in measurement-induced entanglement phase transitions.
arXiv Detail & Related papers (2024-08-07T15:15:41Z) - Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Magic spreading in random quantum circuits [0.0]
Calderbank-Shor-Steane entropy is a measure of non-stabilizerness.
Our main finding is that magic resources equilibrate on timescales logarithmic in system size N.
We conjecture that our findings describe the phenomenology of non-stabilizerness growth in a broad class of chaotic many-body systems.
arXiv Detail & Related papers (2024-07-04T13:43:46Z) - Stabilizer entropies are monotones for magic-state resource theory [0.0]
We establish the monotonicity of stabilizer entropies for $alpha geq 2$ within the context of magic-state resource theory restricted to pure states.
We extend stabilizer entropies to mixed states as monotones via convex roof constructions.
arXiv Detail & Related papers (2024-04-17T18:00:02Z) - Stabilizer entropies and nonstabilizerness monotones [0.0]
We study different aspects of the stabilizer entropies (SEs)
We compare them against known nonstabilizerness monotones such as the min-relative entropy and the robustness of magic.
In addition to previously developed exact methods to compute the R'enyi SEs, we put forward a scheme based on perfect MPS sampling.
arXiv Detail & Related papers (2023-03-17T17:42:23Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.