Quantum Algorithm for Shortest Vector Problems with Folded Spectrum Method
- URL: http://arxiv.org/abs/2408.16062v2
- Date: Thu, 5 Sep 2024 17:20:52 GMT
- Title: Quantum Algorithm for Shortest Vector Problems with Folded Spectrum Method
- Authors: Kota Mizuno, Shohei Watabe,
- Abstract summary: We propose an alternative encoding and alternative quantum algorithm to solve the shortest vector problem.
Our study shows wide potential applicability of the SVP in quantum computing frameworks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum annealing has been recently studied to solve the shortest vector problem (SVP), where the norm of a lattice point vector is mapped to the problem Hamiltonian with the qudit encoding, Hamming-weight encoding, or binary encoding, and the problem to find the shortest vector is mapped to a problem to find a non-trivial first excited state. We here propose an alternative encoding and alternative quantum algorithm to solve the SVP: the one-hot encoding and the quantum imaginary-time algorithm with the folded spectrum (FS) method. We demonstrate that our approach is applicable to find the shortest vector with a variational quantum algorithm. The application of the FS method to the quantum annealing and simulated annealing is also discussed to solve the SVP. Our study shows wide potential applicability of the SVP in quantum computing frameworks.
Related papers
- On the practicality of quantum sieving algorithms for the shortest vector problem [42.70026220176376]
lattice-based cryptography is one of the main candidates of post-quantum cryptography.
cryptographic security against quantum attackers is based on lattice problems like the shortest vector problem (SVP)
Asymptotic quantum speedups for solving SVP are known and rely on Grover's search.
arXiv Detail & Related papers (2024-10-17T16:54:41Z) - A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
Quantum Alternating Operator Ansatz takes into consideration a general parameterized family of unitary operators to efficiently model the Hamiltonian describing the set of vectors.
This algorithm creates an efficient alternative to QAOA, where: 1) a Quantum parametrized circuit executed on a quantum machine models the set of string vectors; 2) a Classical meta-optimization loop executed on a classical machine; 3) an estimation of the average cost of each string vector computing.
arXiv Detail & Related papers (2023-11-06T17:39:14Z) - Polynomial-time Solver of Tridiagonal QUBO and QUDO problems with Tensor Networks [41.94295877935867]
We present an algorithm for solving tridiagonal Quadratic Unconstrained Binary Optimization (QUBO) problems and Quadratic Unconstrained Discrete Optimization (QUDO) problems with one-neighbor interactions.
Our method is based on the simulation of a quantum state to which we will apply an imaginary time evolution and perform a series of partial traces to obtain the state of maximum amplitude.
arXiv Detail & Related papers (2023-09-19T10:45:15Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum algorithmic solutions to the shortest vector problem on
simulated coherent Ising machines [17.796840950659018]
Quantum computing poses a threat to contemporary cryptosystems, with advances to a state in which it will cause problems predicted for the next few decades.
Many of the proposed cryptosystems designed to be quantum-secure are based on the Shortest Vector Problem and related problems.
In this paper we use the Quadratic Unconstrained Binary optimisation formulation of the Shortest Vector Problem implemented as a quantum Ising model on a simulated Coherent Ising Machine.
arXiv Detail & Related papers (2023-04-08T17:34:10Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - An entanglement perspective on the quantum approximate optimization
algorithm [0.0]
We study the entanglement growth and spread resulting from randomized and optimized QAOA circuits.
We also investigate the entanglement spectrum in connection with random matrix theory.
arXiv Detail & Related papers (2022-06-14T17:37:44Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.