Using Large Language Models to Create AI Personas for Replication and Prediction of Media Effects: An Empirical Test of 133 Published Experimental Research Findings
- URL: http://arxiv.org/abs/2408.16073v1
- Date: Wed, 28 Aug 2024 18:14:39 GMT
- Title: Using Large Language Models to Create AI Personas for Replication and Prediction of Media Effects: An Empirical Test of 133 Published Experimental Research Findings
- Authors: Leo Yeykelis, Kaavya Pichai, James J. Cummings, Byron Reeves,
- Abstract summary: This report analyzes the potential for large language models (LLMs) to expedite accurate replication of message effects studies.
We tested LLM-powered participants by replicating 133 experimental findings from 14 papers containing 45 recent studies in the Journal of Marketing.
Our LLM replications successfully reproduced 76% of the original main effects (84 out of 111), demonstrating strong potential for AI-assisted replication of studies in which people respond to media stimuli.
- Score: 0.3749861135832072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report analyzes the potential for large language models (LLMs) to expedite accurate replication of published message effects studies. We tested LLM-powered participants (personas) by replicating 133 experimental findings from 14 papers containing 45 recent studies in the Journal of Marketing (January 2023-May 2024). We used a new software tool, Viewpoints AI (https://viewpoints.ai/), that takes study designs, stimuli, and measures as input, automatically generates prompts for LLMs to act as a specified sample of unique personas, and collects their responses to produce a final output in the form of a complete dataset and statistical analysis. The underlying LLM used was Anthropic's Claude Sonnet 3.5. We generated 19,447 AI personas to replicate these studies with the exact same sample attributes, study designs, stimuli, and measures reported in the original human research. Our LLM replications successfully reproduced 76% of the original main effects (84 out of 111), demonstrating strong potential for AI-assisted replication of studies in which people respond to media stimuli. When including interaction effects, the overall replication rate was 68% (90 out of 133). The use of LLMs to replicate and accelerate marketing research on media effects is discussed with respect to the replication crisis in social science, potential solutions to generalizability problems in sampling subjects and experimental conditions, and the ability to rapidly test consumer responses to various media stimuli. We also address the limitations of this approach, particularly in replicating complex interaction effects in media response studies, and suggest areas for future research and improvement in AI-assisted experimental replication of media effects.
Related papers
- Causal Lifting of Neural Representations: Zero-Shot Generalization for Causal Inferences [56.23412698865433]
We focus on causal inferences on a target experiment with unlabeled factual outcomes, retrieved by a predictive model fine-tuned on a labeled similar experiment.
First, we show that factual outcome estimation via Empirical Risk Minimization (ERM) may fail to yield valid causal inferences on the target population.
We propose Deconfounded Empirical Risk Minimization (DERM), a new simple learning procedure minimizing the risk over a fictitious target population.
arXiv Detail & Related papers (2025-02-10T10:52:17Z) - LLM-Mirror: A Generated-Persona Approach for Survey Pre-Testing [0.0]
We investigate whether providing respondents' prior information can replicate both statistical distributions and individual decision-making patterns.
We also introduce the concept of the LLM-Mirror, user personas generated by supplying respondent-specific information to the LLM.
Our findings show that: (1) PLS-SEM analysis shows LLM-generated responses align with human responses, (2) LLMs are capable of reproducing individual human responses, and (3) LLM-Mirror responses closely follow human responses at the individual level.
arXiv Detail & Related papers (2024-12-04T09:39:56Z) - Generative Agent Simulations of 1,000 People [56.82159813294894]
We present a novel agent architecture that simulates the attitudes and behaviors of 1,052 real individuals.
The generative agents replicate participants' responses on the General Social Survey 85% as accurately as participants replicate their own answers.
Our architecture reduces accuracy biases across racial and ideological groups compared to agents given demographic descriptions.
arXiv Detail & Related papers (2024-11-15T11:14:34Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Can AI Replace Human Subjects? A Large-Scale Replication of Psychological Experiments with LLMs [1.5031024722977635]
GPT-4 successfully replicates 76.0 percent of main effects and 47.0 percent of interaction effects observed in the original studies.
GPT-4's replicated confidence intervals contain the original effect sizes, with the majority of replicated effect sizes exceeding the 95 percent confidence interval of the original studies.
Our results demonstrate the potential of LLMs as powerful tools in psychological research but also emphasize the need for caution in interpreting AI-driven findings.
arXiv Detail & Related papers (2024-08-29T05:18:50Z) - Simulating Field Experiments with Large Language Models [0.6144680854063939]
This paper pioneers the utilization of large language models (LLMs) for simulating field experiments.
By introducing two novel prompting strategies, observer and participant modes, we demonstrate the ability of LLMs to both predict outcomes and replicate participant responses within complex field settings.
Our findings indicate a promising alignment with actual experimental results in certain scenarios, achieving a stimulation accuracy of 66% in observer mode.
arXiv Detail & Related papers (2024-08-19T03:41:43Z) - Exploring the use of a Large Language Model for data extraction in systematic reviews: a rapid feasibility study [0.28318468414401093]
This paper describes a rapid feasibility study of using GPT-4, a large language model (LLM), to (semi)automate data extraction in systematic reviews.
Overall, results indicated an accuracy of around 80%, with some variability between domains.
arXiv Detail & Related papers (2024-05-23T11:24:23Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraph is a model-based white-box detection and forecasting approach for large language models.
We show that hallucination can be effectively detected by analyzing the LLM's internal state transition dynamics.
Our work paves a new way for model-based white-box analysis of LLMs, motivating the research community to further explore, understand, and refine the intricate dynamics of LLM behaviors.
arXiv Detail & Related papers (2024-04-06T20:02:20Z) - Monitoring AI-Modified Content at Scale: A Case Study on the Impact of ChatGPT on AI Conference Peer Reviews [51.453135368388686]
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM)
Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level.
arXiv Detail & Related papers (2024-03-11T21:51:39Z) - Susceptibility to Influence of Large Language Models [5.931099001882958]
Two studies tested the hypothesis that a Large Language Model (LLM) can be used to model psychological change following exposure to influential input.
The first study tested a generic mode of influence - the Illusory Truth Effect (ITE)
The second study concerns a specific mode of influence - populist framing of news to increase its persuasion and political mobilization.
arXiv Detail & Related papers (2023-03-10T16:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.