Simulating Field Experiments with Large Language Models
- URL: http://arxiv.org/abs/2408.09682v1
- Date: Mon, 19 Aug 2024 03:41:43 GMT
- Title: Simulating Field Experiments with Large Language Models
- Authors: Yaoyu Chen, Yuheng Hu, Yingda Lu,
- Abstract summary: This paper pioneers the utilization of large language models (LLMs) for simulating field experiments.
By introducing two novel prompting strategies, observer and participant modes, we demonstrate the ability of LLMs to both predict outcomes and replicate participant responses within complex field settings.
Our findings indicate a promising alignment with actual experimental results in certain scenarios, achieving a stimulation accuracy of 66% in observer mode.
- Score: 0.6144680854063939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prevailing large language models (LLMs) are capable of human responses simulation through its unprecedented content generation and reasoning abilities. However, it is not clear whether and how to leverage LLMs to simulate field experiments. In this paper, we propose and evaluate two prompting strategies: the observer mode that allows a direct prediction on main conclusions and the participant mode that simulates distributions of responses from participants. Using this approach, we examine fifteen well cited field experimental papers published in INFORMS and MISQ, finding encouraging alignments between simulated experimental results and the actual results in certain scenarios. We further identify topics of which LLMs underperform, including gender difference and social norms related research. Additionally, the automatic and standardized workflow proposed in this paper enables the possibility of a large-scale screening of more papers with field experiments. This paper pioneers the utilization of large language models (LLMs) for simulating field experiments, presenting a significant extension to previous work which focused solely on lab environments. By introducing two novel prompting strategies, observer and participant modes, we demonstrate the ability of LLMs to both predict outcomes and replicate participant responses within complex field settings. Our findings indicate a promising alignment with actual experimental results in certain scenarios, achieving a stimulation accuracy of 66% in observer mode. This study expands the scope of potential applications for LLMs and illustrates their utility in assisting researchers prior to engaging in expensive field experiments. Moreover, it sheds light on the boundaries of LLMs when used in simulating field experiments, serving as a cautionary note for researchers considering the integration of LLMs into their experimental toolkit.
Related papers
- What is the Role of Large Language Models in the Evolution of Astronomy Research? [0.0]
ChatGPT and other state-of-the-art large language models (LLMs) are rapidly transforming multiple fields.
These models, commonly trained on vast datasets, exhibit human-like text generation capabilities.
arXiv Detail & Related papers (2024-09-30T12:42:25Z) - Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms [7.550701021850185]
We investigate the potential of Large Language Models (LLMs) to help students engage in post-lesson reflection.
We conducted two randomized field experiments in undergraduate computer science courses.
arXiv Detail & Related papers (2024-06-01T02:41:59Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraph is a model-based white-box detection and forecasting approach for large language models.
We show that hallucination can be effectively detected by analyzing the LLM's internal state transition dynamics.
Our work paves a new way for model-based white-box analysis of LLMs, motivating the research community to further explore, understand, and refine the intricate dynamics of LLM behaviors.
arXiv Detail & Related papers (2024-04-06T20:02:20Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - The Challenge of Using LLMs to Simulate Human Behavior: A Causal
Inference Perspective [0.32634122554913997]
Large Language Models (LLMs) have demonstrated impressive potential to simulate human behavior.
We show that variations in the treatment included in the prompt can cause variations in unspecified confounding factors.
We propose a theoretical framework suggesting this endogeneity issue generalizes to other contexts.
arXiv Detail & Related papers (2023-12-24T16:32:35Z) - Breaking the Silence: the Threats of Using LLMs in Software Engineering [12.368546216271382]
Large Language Models (LLMs) have gained considerable traction within the Software Engineering (SE) community.
This paper initiates an open discussion on potential threats to the validity of LLM-based research.
arXiv Detail & Related papers (2023-12-13T11:02:19Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - On the Importance of Application-Grounded Experimental Design for
Evaluating Explainable ML Methods [20.2027063607352]
We present an experimental study extending a prior explainable ML evaluation experiment and bringing the setup closer to the deployment setting.
Our empirical study draws dramatically different conclusions than the prior work, highlighting how seemingly trivial experimental design choices can yield misleading results.
We believe this work holds lessons about the necessity of situating the evaluation of any ML method and choosing appropriate tasks, data, users, and metrics to match the intended deployment contexts.
arXiv Detail & Related papers (2022-06-24T14:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.