Ensuring Equitable Financial Decisions: Leveraging Counterfactual Fairness and Deep Learning for Bias
- URL: http://arxiv.org/abs/2408.16088v1
- Date: Tue, 27 Aug 2024 14:28:06 GMT
- Title: Ensuring Equitable Financial Decisions: Leveraging Counterfactual Fairness and Deep Learning for Bias
- Authors: Saish Shinde,
- Abstract summary: This research paper investigates advanced bias mitigation techniques, with a particular focus on counterfactual fairness in conjunction with data augmentation.
The study looks into how these integrated approaches can lessen gender bias in the financial industry, specifically in loan approval procedures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Concerns regarding fairness and bias have been raised in recent years due to the growing use of machine learning models in crucial decision-making processes, especially when it comes to delicate characteristics like gender. In order to address biases in machine learning models, this research paper investigates advanced bias mitigation techniques, with a particular focus on counterfactual fairness in conjunction with data augmentation. The study looks into how these integrated approaches can lessen gender bias in the financial industry, specifically in loan approval procedures. We show that these approaches are effective in achieving more equitable results through thorough testing and assessment on a skewed financial dataset. The findings emphasize how crucial it is to use fairness-aware techniques when creating machine learning models in order to guarantee morally righteous and impartial decision-making.
Related papers
- Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
Modern NLP systems exhibit a range of biases, which a growing literature on model debiasing attempts to correct.
This paper seeks to clarify the current situation and plot a course for meaningful progress in fair learning.
arXiv Detail & Related papers (2023-02-11T14:54:00Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Fairness and Explainability: Bridging the Gap Towards Fair Model
Explanations [12.248793742165278]
We bridge the gap between fairness and explainability by presenting a novel perspective of procedure-oriented fairness based on explanations.
We propose a Comprehensive Fairness Algorithm (CFA), which simultaneously fulfills multiple objectives - improving traditional fairness, satisfying explanation fairness, and maintaining the utility performance.
arXiv Detail & Related papers (2022-12-07T18:35:54Z) - Algorithmic decision making methods for fair credit scoring [0.0]
We evaluate the effectiveness of 12 leading bias mitigation methods across 5 different fairness metrics.
Our research serves to bridge the gap between experimental machine learning and its practical applications in the finance industry.
arXiv Detail & Related papers (2022-09-16T13:24:25Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
Adversarial training is a common approach for bias mitigation in natural language processing.
We propose an augmented discriminator for adversarial training, which takes the target class as input to create richer features.
arXiv Detail & Related papers (2022-03-12T02:22:58Z) - On Learning and Testing of Counterfactual Fairness through Data
Preprocessing [27.674565351048077]
Machine learning has become more important in real-life decision-making but people are concerned about the ethical problems it may bring when used improperly.
Recent work brings the discussion of machine learning fairness into the causal framework and elaborates on the concept of Counterfactual Fairness.
We develop the Fair Learning through dAta Preprocessing (FLAP) algorithm to learn counterfactually fair decisions from biased training data.
arXiv Detail & Related papers (2022-02-25T00:21:46Z) - Modeling Techniques for Machine Learning Fairness: A Survey [17.925809181329015]
In recent years, various techniques have been developed to mitigate the bias for machine learning models.
In this survey, we review the current progress of in-processing bias mitigation techniques.
arXiv Detail & Related papers (2021-11-04T17:17:26Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Do the Machine Learning Models on a Crowd Sourced Platform Exhibit Bias?
An Empirical Study on Model Fairness [7.673007415383724]
We have created a benchmark of 40 top-rated models from Kaggle used for 5 different tasks.
We have applied 7 mitigation techniques on these models and analyzed the fairness, mitigation results, and impacts on performance.
arXiv Detail & Related papers (2020-05-21T23:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.