An experimental study on fairness-aware machine learning for credit scoring problem
- URL: http://arxiv.org/abs/2412.20298v1
- Date: Sat, 28 Dec 2024 23:27:07 GMT
- Title: An experimental study on fairness-aware machine learning for credit scoring problem
- Authors: Huyen Giang Thi Thu, Thang Viet Doan, Tai Le Quy,
- Abstract summary: We present a comprehensive experimental study of fairness-aware machine learning in credit scoring.
The study explores key aspects of credit scoring, including financial datasets, predictive models, and fairness measures.
- Score: 0.7373617024876725
- License:
- Abstract: Digitalization of credit scoring is an essential requirement for financial organizations and commercial banks, especially in the context of digital transformation. Machine learning techniques are commonly used to evaluate customers' creditworthiness. However, the predicted outcomes of machine learning models can be biased toward protected attributes, such as race or gender. Numerous fairness-aware machine learning models and fairness measures have been proposed. Nevertheless, their performance in the context of credit scoring has not been thoroughly investigated. In this paper, we present a comprehensive experimental study of fairness-aware machine learning in credit scoring. The study explores key aspects of credit scoring, including financial datasets, predictive models, and fairness measures. We also provide a detailed evaluation of fairness-aware predictive models and fairness measures on widely used financial datasets.
Related papers
- Best Practices for Responsible Machine Learning in Credit Scoring [0.03984353141309896]
This tutorial paper performed a non-systematic literature review to guide best practices for developing responsible machine learning models in credit scoring.
We discuss definitions, metrics, and techniques for mitigating biases and ensuring equitable outcomes across different groups.
By adopting these best practices, financial institutions can harness the power of machine learning while upholding ethical and responsible lending practices.
arXiv Detail & Related papers (2024-09-30T17:39:38Z) - Ensuring Equitable Financial Decisions: Leveraging Counterfactual Fairness and Deep Learning for Bias [0.0]
This research paper investigates advanced bias mitigation techniques, with a particular focus on counterfactual fairness in conjunction with data augmentation.
The study looks into how these integrated approaches can lessen gender bias in the financial industry, specifically in loan approval procedures.
arXiv Detail & Related papers (2024-08-27T14:28:06Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
Method integrates machine learning with self-consistent field methods to achieve both low validation cost and interpret-ability.
This, in turn, enables exploration of the model's ability with active learning and instills confidence in its integration into real-world studies.
arXiv Detail & Related papers (2024-02-15T18:41:35Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Inclusive FinTech Lending via Contrastive Learning and Domain Adaptation [9.75150920742607]
FinTech lending has played a significant role in facilitating financial inclusion.
There are concerns about the potentially biased algorithmic decision-making during loan screening.
We propose a new Transformer-based sequential loan screening model with self-supervised contrastive learning and domain adaptation.
arXiv Detail & Related papers (2023-05-10T01:11:35Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
This paper studies a model that protects the privacy of individuals' sensitive information while also allowing it to learn non-discriminatory predictors.
A key characteristic of the proposed model is to enable the adoption of off-the-selves and non-private fair models to create a privacy-preserving and fair model.
arXiv Detail & Related papers (2022-04-11T14:42:54Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z) - Insights into Fairness through Trust: Multi-scale Trust Quantification
for Financial Deep Learning [94.65749466106664]
A fundamental aspect of fairness that has not been explored in financial deep learning is the concept of trust.
We conduct multi-scale trust quantification on a deep neural network for the purpose of credit card default prediction.
arXiv Detail & Related papers (2020-11-03T19:05:07Z) - A Novel Classification Approach for Credit Scoring based on Gaussian
Mixture Models [0.0]
This paper introduces a new method for credit scoring based on Gaussian Mixture Models.
Our algorithm classifies consumers into groups which are labeled as positive or negative.
We apply our model with real world databases from Australia, Japan, and Germany.
arXiv Detail & Related papers (2020-10-26T07:34:27Z) - Transparency, Auditability and eXplainability of Machine Learning Models
in Credit Scoring [4.370097023410272]
This paper works out different dimensions that have to be considered for making credit scoring models understandable.
We present an overview of techniques, demonstrate how they can be applied in credit scoring and how results compare to the interpretability of score cards.
arXiv Detail & Related papers (2020-09-28T15:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.