Negative Binomial Matrix Completion
- URL: http://arxiv.org/abs/2408.16113v1
- Date: Wed, 28 Aug 2024 19:43:48 GMT
- Title: Negative Binomial Matrix Completion
- Authors: Yu Lu, Kevin Bui, Roummel F. Marcia,
- Abstract summary: Matrix completion focuses on recovering missing or incomplete information in matrices.
We introduce NB matrix completion by proposing a nuclear-norm regularized model that can be solved by proximal descent gradient.
In our experiments, we demonstrate that the NB model outperforms Poisson matrix completion in various noise and missing data settings on real data.
- Score: 5.5415918072761805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matrix completion focuses on recovering missing or incomplete information in matrices. This problem arises in various applications, including image processing and network analysis. Previous research proposed Poisson matrix completion for count data with noise that follows a Poisson distribution, which assumes that the mean and variance are equal. Since overdispersed count data, whose variance is greater than the mean, is more likely to occur in realistic settings, we assume that the noise follows the negative binomial (NB) distribution, which can be more general than the Poisson distribution. In this paper, we introduce NB matrix completion by proposing a nuclear-norm regularized model that can be solved by proximal gradient descent. In our experiments, we demonstrate that the NB model outperforms Poisson matrix completion in various noise and missing data settings on real data.
Related papers
- Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks [4.58556584533865]
We propose the Deep Double Poisson Network (DDPN) to produce accurate, input-conditional uncertainty representations.
DDPN vastly outperforms existing discrete models.
It can be applied to a variety of count regression datasets.
arXiv Detail & Related papers (2024-06-13T16:02:03Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Sparse Nonnegative Tucker Decomposition and Completion under Noisy
Observations [22.928734507082574]
We propose a sparse nonnegative Tucker decomposition and completion method for the recovery of underlying nonnegative data under noisy observations.
Our theoretical results are better than those by existing tensor-based or matrix-based methods.
arXiv Detail & Related papers (2022-08-17T13:29:14Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
This paper uses techniques from Random Matrix Theory to find the ideal training-testing data split for a simple linear regression.
It defines "ideal" as satisfying the integrity metric, i.e. the empirical model error is the actual measurement noise.
This paper is the first to solve for the training and test size for any model in a way that is truly optimal.
arXiv Detail & Related papers (2021-12-11T13:18:33Z) - Uncertainty Quantification For Low-Rank Matrix Completion With
Heterogeneous and Sub-Exponential Noise [2.793095554369281]
The problem of low-rank matrix completion with heterogeneous and sub-exponential noise is particularly relevant to a number of applications in modern commerce.
Examples include panel sales data and data collected from web-commerce systems such as recommendation engines.
Here we characterize the distribution of estimated matrix entries when the observation noise is heterogeneous sub-exponential and provide, as an application, explicit formulas for this distribution.
arXiv Detail & Related papers (2021-10-22T20:25:07Z) - Causal Matrix Completion [15.599296461516984]
Matrix completion is the study of recovering an underlying matrix from a sparse subset of noisy observations.
Traditionally, it is assumed that the entries of the matrix are "missing completely at random"
arXiv Detail & Related papers (2021-09-30T14:17:56Z) - Matrix Completion with Quantified Uncertainty through Low Rank Gaussian
Copula [30.84155327760468]
This paper proposes a framework for missing value imputation with quantified uncertainty.
The time required to fit the model scales linearly with the number of rows and the number of columns in the dataset.
Empirical results show the method yields state-of-the-art imputation accuracy across a wide range of data types.
arXiv Detail & Related papers (2020-06-18T19:51:42Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.