Concentration of Measure for Distributions Generated via Diffusion Models
- URL: http://arxiv.org/abs/2501.07741v2
- Date: Tue, 25 Feb 2025 01:15:46 GMT
- Title: Concentration of Measure for Distributions Generated via Diffusion Models
- Authors: Reza Ghane, Anthony Bao, Danil Akhtiamov, Babak Hassibi,
- Abstract summary: We show via a combination of mathematical arguments and empirical evidence that data distributions sampled from diffusion models satisfy a Concentration of Measure Property.<n>This implies that such models are quite restrictive and gives an explanation for a fact previously observed in the literature that conventional diffusion models cannot capture "heavy-tailed" data.
- Score: 16.868125342684603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show via a combination of mathematical arguments and empirical evidence that data distributions sampled from diffusion models satisfy a Concentration of Measure Property saying that any Lipschitz $1$-dimensional projection of a random vector is not too far from its mean with high probability. This implies that such models are quite restrictive and gives an explanation for a fact previously observed in the literature that conventional diffusion models cannot capture "heavy-tailed" data (i.e. data $\mathbf{x}$ for which the norm $\|\mathbf{x}\|_2$ does not possess a sub-Gaussian tail) well. We then proceed to train a generalized linear model using stochastic gradient descent (SGD) on the diffusion-generated data for a multiclass classification task and observe empirically that a Gaussian universality result holds for the test error. In other words, the test error depends only on the first and second order statistics of the diffusion-generated data in the linear setting. Results of such forms are desirable because they allow one to assume the data itself is Gaussian for analyzing performance of the trained classifier. Finally, we note that current approaches to proving universality do not apply to this case as the covariance matrices of the data tend to have vanishing minimum singular values for the diffusion-generated data, while the current proofs assume that this is not the case (see Subsection 3.4 for more details). This leaves extending previous mathematical universality results as an intriguing open question.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.<n>We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Generative inpainting of incomplete Euclidean distance matrices of trajectories generated by a fractional Brownian motion [46.1232919707345]
Fractional Brownian motion (fBm) features both randomness and strong scale-free correlations.
Here we examine a zoo of diffusion-based inpainting methods on a specific dataset of corrupted images.
We find that the conditional diffusion generation readily reproduces the built-in correlations of fBm paths in different memory regimes.
arXiv Detail & Related papers (2024-04-10T14:22:16Z) - A Note on the Convergence of Denoising Diffusion Probabilistic Models [3.1767625261233046]
We derive a quantitative upper bound on the Wasserstein distance between the data-generating distribution and the distribution learned by a diffusion model.
Unlike previous works in this field, our result does not make assumptions on the learned score function.
arXiv Detail & Related papers (2023-12-10T20:29:58Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
We provide the first convergence bounds which are linear in the data dimension.
We show that diffusion models require at most $tilde O(fracd log2(1/delta)varepsilon2)$ steps to approximate an arbitrary distribution.
arXiv Detail & Related papers (2023-08-07T16:01:14Z) - Class-Balancing Diffusion Models [57.38599989220613]
Class-Balancing Diffusion Models (CBDM) are trained with a distribution adjustment regularizer as a solution.
Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
arXiv Detail & Related papers (2023-04-30T20:00:14Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Are Gaussian data all you need? Extents and limits of universality in
high-dimensional generalized linear estimation [24.933476324230377]
We consider the problem of generalized linear estimation on Gaussian mixture data with labels given by a single-index model.
Motivated by the recent stream of results on the universality of the test and training errors in generalized linear estimation, we ask ourselves the question: "when is a single Gaussian enough to characterize the error?"
arXiv Detail & Related papers (2023-02-17T14:56:40Z) - Data thinning for convolution-closed distributions [2.299914829977005]
We propose data thinning, an approach for splitting an observation into two or more independent parts that sum to the original observation.
We show that data thinning can be used to validate the results of unsupervised learning approaches.
arXiv Detail & Related papers (2023-01-18T02:47:41Z) - Gaussian Universality of Linear Classifiers with Random Labels in
High-Dimension [24.503842578208268]
We prove that data coming from a range of generative models in high-dimensions have the same minimum training loss as Gaussian data with corresponding data covariance.
In particular, our theorem covers data created by an arbitrary mixture of homogeneous Gaussian clouds, as well as multi-modal generative neural networks.
arXiv Detail & Related papers (2022-05-26T12:25:24Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.