Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations
- URL: http://arxiv.org/abs/2408.16115v3
- Date: Fri, 6 Sep 2024 11:50:36 GMT
- Title: Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations
- Authors: Richard Bergna, Sergio Calvo-Ordoñez, Felix L. Opolka, Pietro Liò, Jose Miguel Hernandez-Lobato,
- Abstract summary: We introduce Latent Graph Neural Differential Equations (LGNSDE) which enhance GNODE by embedding randomness through Brownian motion to quantify uncertainty.
We provide theoretical guarantees for LGNSDE and empirically show better performance in uncertainty quantification.
- Score: 14.422150854883453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of learning uncertainty-aware representations for graph-structured data. While Graph Neural Ordinary Differential Equations (GNODE) are effective in learning node representations, they fail to quantify uncertainty. To address this, we introduce Latent Graph Neural Stochastic Differential Equations (LGNSDE), which enhance GNODE by embedding randomness through Brownian motion to quantify uncertainty. We provide theoretical guarantees for LGNSDE and empirically show better performance in uncertainty quantification.
Related papers
- Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Graph Neural Stochastic Differential Equations [3.568455515949288]
We present a novel model Graph Neural Differential Equations (Graph Neural SDEs)
This technique enhances the Graph Neural Ordinary Differential Equations (Graph Neural ODEs) by embedding randomness into data representation using Brownian motion.
We find that Latent Graph Neural SDEs surpass conventional models like Graph Convolutional Networks and Graph Neural ODEs, especially in confidence prediction.
arXiv Detail & Related papers (2023-08-23T09:20:38Z) - A General Framework for quantifying Aleatoric and Epistemic uncertainty
in Graph Neural Networks [0.29494468099506893]
Graph Neural Networks (GNN) provide a powerful framework that elegantly integrates Graph theory with Machine learning.
We consider the problem of quantifying the uncertainty in predictions of GNN stemming from modeling errors and measurement uncertainty.
We propose a unified approach to treat both sources of uncertainty in a Bayesian framework.
arXiv Detail & Related papers (2022-05-20T05:25:40Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Stability of Graph Convolutional Neural Networks to Stochastic
Perturbations [122.12962842842349]
Graph convolutional neural networks (GCNNs) are nonlinear processing tools to learn representations from network data.
Current analysis considers deterministic perturbations but fails to provide relevant insights when topological changes are random.
This paper investigates the stability of GCNNs to perturbed graph perturbations induced by link losses.
arXiv Detail & Related papers (2021-06-19T16:25:28Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
We present a novel, domain-agnostic approach to tackling this problem.
We use compositions of physics-informed random features, derived from ordinary differential equations.
We find that our approach achieves comparable performance to a number of other probabilistic models on benchmark regression tasks.
arXiv Detail & Related papers (2021-06-10T17:55:13Z) - Implicit Graph Neural Networks [46.0589136729616]
We propose a graph learning framework called Implicit Graph Neural Networks (IGNN)
IGNNs consistently capture long-range dependencies and outperform state-of-the-art GNN models.
arXiv Detail & Related papers (2020-09-14T06:04:55Z) - Stochastic Graph Recurrent Neural Network [6.656993023468793]
We propose SGRNN, a novel neural architecture that applies latent variables to simultaneously capture evolution in node attributes and topology.
Specifically, deterministic states are separated from states in the iterative process to suppress mutual interference.
Experiments on real-world datasets demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2020-09-01T16:14:30Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.