Data Formulator 2: Iteratively Creating Rich Visualizations with AI
- URL: http://arxiv.org/abs/2408.16119v1
- Date: Wed, 28 Aug 2024 20:12:17 GMT
- Title: Data Formulator 2: Iteratively Creating Rich Visualizations with AI
- Authors: Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, Jianfeng Gao,
- Abstract summary: We present Data Formulator 2, an LLM-powered visualization system to address these challenges.
With Data Formulator 2, users describe their visualization intent with blended UI and natural language inputs, and data transformation are delegated to AI.
To support iteration, Data Formulator 2 lets users navigate their iteration history and reuse previous designs towards new ones so that they don't need to start from scratch every time.
- Score: 65.48447317310442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To create rich visualizations, data analysts often need to iterate back and forth among data processing and chart specification to achieve their goals. To achieve this, analysts need not only proficiency in data transformation and visualization tools but also efforts to manage the branching history consisting of many different versions of data and charts. Recent LLM-powered AI systems have greatly improved visualization authoring experiences, for example by mitigating manual data transformation barriers via LLMs' code generation ability. However, these systems do not work well for iterative visualization authoring, because they often require analysts to provide, in a single turn, a text-only prompt that fully describes the complex visualization task to be performed, which is unrealistic to both users and models in many cases. In this paper, we present Data Formulator 2, an LLM-powered visualization system to address these challenges. With Data Formulator 2, users describe their visualization intent with blended UI and natural language inputs, and data transformation are delegated to AI. To support iteration, Data Formulator 2 lets users navigate their iteration history and reuse previous designs towards new ones so that they don't need to start from scratch every time. In a user study with eight participants, we observed that Data Formulator 2 allows participants to develop their own iteration strategies to complete challenging data exploration sessions.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Distill Visual Chart Reasoning Ability from LLMs to MLLMs [38.62832112530892]
Solving complex chart Q&A tasks requires advanced visual reasoning abilities in multimodal large language models (MLLMs)
We propose Code-as-Intermediary Translation (CIT), a cost-effective, efficient and easily scalable data synthesis method for distilling visual reasoning abilities from LLMs to MLLMs.
We employ text-based synthesizing techniques to construct chart-plotting code and produce ReachQA, a dataset containing 3k reasoning-intensive charts and 20k Q&A pairs.
arXiv Detail & Related papers (2024-10-24T14:50:42Z) - Data Formulator: AI-powered Concept-driven Visualization Authoring [31.45748186186275]
We present a new visualization paradigm, concept binding, that separates high-level visualization intents and low-level data transformation steps.
With Data Formulator, authors first define data concepts they plan to visualize using natural languages or examples, and then bind them to visual channels.
Data Formulator dispatches its AI-agent to automatically transform the input data to surface these concepts and generate desired visualizations.
arXiv Detail & Related papers (2023-09-18T19:06:29Z) - Learning without Forgetting for Vision-Language Models [65.49600786387106]
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real world.
Recent advances in Vision-Language Models (VLM) have shown promising capabilities in learning generalizable representations.
We propose PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting.
arXiv Detail & Related papers (2023-05-30T17:59:32Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
We introduce InsightPilot, an automated data exploration system designed to simplify the data exploration process.
InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining.
In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts.
arXiv Detail & Related papers (2023-04-02T07:27:49Z) - Accountable Textual-Visual Chat Learns to Reject Human Instructions in
Image Re-creation [26.933683814025475]
We introduce two novel multimodal datasets: the synthetic CLEVR-ATVC dataset (620K) and the manually pictured Fruit-ATVC dataset (50K).
These datasets incorporate both visual and text-based inputs and outputs.
To facilitate the accountability of multimodal systems in rejecting human requests, similar to language-based ChatGPT conversations, we introduce specific rules as supervisory signals within the datasets.
arXiv Detail & Related papers (2023-03-10T15:35:11Z) - Using Large Language Models to Generate Engaging Captions for Data
Visualizations [51.98253121636079]
Large language models (LLM) use sophisticated deep learning technology to produce human-like prose.
Key challenge lies in designing the most effective prompt for the LLM, a task called prompt engineering.
We report on first experiments using the popular LLM GPT-3 and deliver some promising results.
arXiv Detail & Related papers (2022-12-27T23:56:57Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.