Variational Mode Decomposition and Linear Embeddings are What You Need For Time-Series Forecasting
- URL: http://arxiv.org/abs/2408.16122v2
- Date: Wed, 4 Sep 2024 13:28:34 GMT
- Title: Variational Mode Decomposition and Linear Embeddings are What You Need For Time-Series Forecasting
- Authors: Hafizh Raihan Kurnia Putra, Novanto Yudistira, Tirana Noor Fatyanosa,
- Abstract summary: Variational Mode Decomposition (VMD) has emerged as a promising technique to mitigate volatility by decomposing data into distinct modes.
In this study, we integrate VMD with linear models to develop a robust forecasting framework.
- Score: 2.1233286062376497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-series forecasting often faces challenges due to data volatility, which can lead to inaccurate predictions. Variational Mode Decomposition (VMD) has emerged as a promising technique to mitigate volatility by decomposing data into distinct modes, thereby enhancing forecast accuracy. In this study, we integrate VMD with linear models to develop a robust forecasting framework. Our approach is evaluated on 13 diverse datasets, including ETTm2, WindTurbine, M4, and 10 air quality datasets from various Southeast Asian cities. The effectiveness of the VMD strategy is assessed by comparing Root Mean Squared Error (RMSE) values from models utilizing VMD against those without it. Additionally, we benchmark linear-based models against well-known neural network architectures such as LSTM, Bidirectional LSTM, and RNN. The results demonstrate a significant reduction in RMSE across nearly all models following VMD application. Notably, the Linear + VMD model achieved the lowest average RMSE in univariate forecasting at 0.619. In multivariate forecasting, the DLinear + VMD model consistently outperformed others, attaining the lowest RMSE across all datasets with an average of 0.019. These findings underscore the effectiveness of combining VMD with linear models for superior time-series forecasting.
Related papers
- A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
The MoE framework combines an RNN for volatile stocks and a linear model for stable stocks, dynamically adjusting the weight of each model through a gating network.
Results indicate that the MoE approach significantly improves predictive accuracy across different volatility profiles.
The MoE model's adaptability allows it to outperform each individual model, reducing errors such as Mean Squared Error (MSE) and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-10-04T14:36:21Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A Statistics and Deep Learning Hybrid Method for Multivariate Time
Series Forecasting and Mortality Modeling [0.0]
Exponential Smoothing Recurrent Neural Network (ES-RNN) is a hybrid between a statistical forecasting model and a recurrent neural network variant.
ES-RNN achieves a 9.4% improvement in absolute error in the Makridakis-4 Forecasting Competition.
arXiv Detail & Related papers (2021-12-16T04:44:19Z) - Bagging, optimized dynamic mode decomposition (BOP-DMD) for robust,
stable forecasting with spatial and temporal uncertainty-quantification [2.741266294612776]
Dynamic mode decomposition (DMD) provides a framework for learning a best-fit linear dynamics model over snapshots of temporal, or-temporal, data.
The majority of DMD algorithms are prone to bias errors from noisy measurements of the dynamics, leading to poor model fits and unstable forecasting capabilities.
The optimized DMD algorithm minimizes the model bias with a variable projection optimization, thus leading to stabilized forecasting capabilities.
arXiv Detail & Related papers (2021-07-22T18:14:20Z) - Decadal Forecasts with ResDMD: a Residual DMD Neural Network [0.0]
Operational forecasting centers are investing in decadal (1-10 year) forecast systems to support long-term decision making for a more climate-resilient society.
One method that has previously been employed is the Dynamic Mode Decomposition (DMD) algorithm.
We investigate an extension to the DMD that explicitly represents the non-linear terms as a neural network.
arXiv Detail & Related papers (2021-06-21T13:49:43Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Comparison of Traditional and Hybrid Time Series Models for Forecasting
COVID-19 Cases [0.5849513679510832]
The coronavirus outbreak of December 2019 has already infected millions all over the world and continues to spread on.
Just when the curve of the outbreak had started to flatten, many countries have again started to witness a rise in cases.
A thorough analysis of time-series forecasting models is therefore required to equip state authorities and health officials with immediate strategies for future times.
arXiv Detail & Related papers (2021-05-05T14:56:27Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.