Exploring the Use of Machine Learning Weather Models in Data Assimilation
- URL: http://arxiv.org/abs/2411.14677v1
- Date: Fri, 22 Nov 2024 02:18:28 GMT
- Title: Exploring the Use of Machine Learning Weather Models in Data Assimilation
- Authors: Xiaoxu Tian, Daniel Holdaway, Daryl Kleist,
- Abstract summary: GraphCast and NeuralGCM are two promising ML-based weather models, but their suitability for data assimilation remains under-explored.
We compare the TL/AD results of GraphCast and NeuralGCM with those of the Model for Prediction Across Scales - Atmosphere (MPAS-A), a well-established numerical weather prediction (NWP) model.
While the adjoint results of both GraphCast and NeuralGCM show some similarity to those of MPAS-A, they also exhibit unphysical noise at various vertical levels, raising concerns about their robustness for operational DA systems.
- Score: 0.0
- License:
- Abstract: The use of machine learning (ML) models in meteorology has attracted significant attention for their potential to improve weather forecasting efficiency and accuracy. GraphCast and NeuralGCM, two promising ML-based weather models, are at the forefront of this innovation. However, their suitability for data assimilation (DA) systems, particularly for four-dimensional variational (4DVar) DA, remains under-explored. This study evaluates the tangent linear (TL) and adjoint (AD) models of both GraphCast and NeuralGCM to assess their viability for integration into a DA framework. We compare the TL/AD results of GraphCast and NeuralGCM with those of the Model for Prediction Across Scales - Atmosphere (MPAS-A), a well-established numerical weather prediction (NWP) model. The comparison focuses on the physical consistency and reliability of TL/AD responses to perturbations. While the adjoint results of both GraphCast and NeuralGCM show some similarity to those of MPAS-A, they also exhibit unphysical noise at various vertical levels, raising concerns about their robustness for operational DA systems. The implications of this study extend beyond 4DVar applications. Unphysical behavior and noise in ML-derived TL/AD models could lead to inaccurate error covariances and unreliable ensemble forecasts, potentially degrading the overall performance of ensemble-based DA systems, as well. Addressing these challenges is critical to ensuring that ML models, such as GraphCast and NeuralGCM, can be effectively integrated into operational DA systems, paving the way for more accurate and efficient weather predictions.
Related papers
- Variational Mode Decomposition and Linear Embeddings are What You Need For Time-Series Forecasting [2.1233286062376497]
Variational Mode Decomposition (VMD) has emerged as a promising technique to mitigate volatility by decomposing data into distinct modes.
In this study, we integrate VMD with linear models to develop a robust forecasting framework.
arXiv Detail & Related papers (2024-08-28T20:22:09Z) - A Benchmark for AI-based Weather Data Assimilation [10.100157158477145]
We propose DABench, a benchmark constructed by simulated observations, real-world observations, and ERA5 reanalysis.
Our experimental results demonstrate that the end-to-end weather forecasting system, integrating 4DVarFormerV2 and Sformer, can assimilate real-world observations.
The proposed DABench will significantly advance research in AI-based DA, AI-based weather forecasting, and related domains.
arXiv Detail & Related papers (2024-08-21T08:50:19Z) - Peaking into the Black-box: Prediction Intervals Give Insight into Data-driven Quadrotor Model Reliability [0.6215404942415159]
Prediction intervals (PIs) may be employed to provide insight into consistency and accuracy of model predictions.
This paper estimates such PIs for bootstrap and Artificial Neural Network (ANN) quadrotor aerodynamic models.
It is found that the ANN-based PIs widen considerably when extrapolating and remain constant, or shrink, when interpolating.
arXiv Detail & Related papers (2024-08-12T09:57:00Z) - Comparing and Contrasting Deep Learning Weather Prediction Backbones on Navier-Stokes and Atmospheric Dynamics [41.00712556599439]
We compare and contrast the most prominent Deep Learning Weather Prediction models, along with their backbones.
We accomplish this by predicting synthetic two-dimensional incompressible Navier-Stokes and real-world global weather dynamics.
For long-ranged weather rollouts of up to 365 days, we observe superior stability and physical soundness in architectures that formulate a spherical data representation.
arXiv Detail & Related papers (2024-07-19T08:59:00Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations [15.934673617658609]
Deep learning models have shown promise in matching, even surpassing, the forecast accuracy of leading NWP models worldwide.
This study introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations.
By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance.
arXiv Detail & Related papers (2024-04-12T15:02:14Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Cloud Failure Prediction with Hierarchical Temporary Memory: An
Empirical Assessment [64.73243241568555]
Hierarchical Temporary Memory (HTM) is an unsupervised learning algorithm inspired by the features of the neocortex.
This paper presents the first systematic study that assesses HTM in the context of failure prediction.
arXiv Detail & Related papers (2021-10-06T07:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.