Integrating Quantum Computing Resources into Scientific HPC Ecosystems
- URL: http://arxiv.org/abs/2408.16159v1
- Date: Wed, 28 Aug 2024 22:44:54 GMT
- Title: Integrating Quantum Computing Resources into Scientific HPC Ecosystems
- Authors: Thomas Beck, Alessandro Baroni, Ryan Bennink, Gilles Buchs, Eduardo Antonio Coello Perez, Markus Eisenbach, Rafael Ferreira da Silva, Muralikrishnan Gopalakrishnan Meena, Kalyan Gottiparthi, Peter Groszkowski, Travis S. Humble, Ryan Landfield, Ketan Maheshwari, Sarp Oral, Michael A. Sandoval, Amir Shehata, In-Saeng Suh, Christopher Zimmer,
- Abstract summary: Quantum Computing offers significant potential to enhance scientific discovery in fields such as quantum chemistry, optimization, and artificial intelligence.
QC faces challenges due to the noisy intermediate-scale quantum era's inherent external noise issues.
This paper outlines plans to unlock new computational possibilities, driving forward scientific inquiry and innovation in a wide array of research domains.
- Score: 29.1407119677928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Computing (QC) offers significant potential to enhance scientific discovery in fields such as quantum chemistry, optimization, and artificial intelligence. Yet QC faces challenges due to the noisy intermediate-scale quantum era's inherent external noise issues. This paper discusses the integration of QC as a computational accelerator within classical scientific high-performance computing (HPC) systems. By leveraging a broad spectrum of simulators and hardware technologies, we propose a hardware-agnostic framework for augmenting classical HPC with QC capabilities. Drawing on the HPC expertise of the Oak Ridge National Laboratory (ORNL) and the HPC lifecycle management of the Department of Energy (DOE), our approach focuses on the strategic incorporation of QC capabilities and acceleration into existing scientific HPC workflows. This includes detailed analyses, benchmarks, and code optimization driven by the needs of the DOE and ORNL missions. Our comprehensive framework integrates hardware, software, workflows, and user interfaces to foster a synergistic environment for quantum and classical computing research. This paper outlines plans to unlock new computational possibilities, driving forward scientific inquiry and innovation in a wide array of research domains.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - A Framework for Integrating Quantum Simulation and High Performance Computing [0.0]
We describe a framework to help streamline access to quantum simulation software running on HPC resources.
This includes an interface for circuit-based quantum computing tasks, as well as the necessary resource management infrastructure.
arXiv Detail & Related papers (2024-08-15T11:48:14Z) - Rethinking Programming Paradigms in the QC-HPC Context [1.1132768046061499]
We explore avenues of refinement for the quantum processing unit (QPU) in the context of many-tasks management.
We illustrate how its potential for scientific discovery might be realized.
arXiv Detail & Related papers (2024-06-05T14:44:19Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - Quantum algorithms for scientific computing [0.0]
Areas that are likely to have the greatest impact on high performance computing include simulation of quantum systems, optimization, and machine learning.
Even a modest quantum enhancement to current classical techniques would have far-reaching impacts in areas such as weather forecasting, aerospace engineering, and the design of "green" materials for sustainable development.
arXiv Detail & Related papers (2023-12-22T18:29:31Z) - Integration of Quantum Accelerators with High Performance Computing -- A
Review of Quantum Programming Tools [0.8477185635891722]
This study aims to characterize existing quantum programming tools (QPTs) from an HPC perspective.
It investigates if existing QPTs have the potential to be efficiently integrated with classical computing models.
This work structures a set of criteria into an analysis blueprint that enables HPC scientists to assess whether a QPT is suitable for the quantum-accelerated classical application.
arXiv Detail & Related papers (2023-09-12T12:24:12Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - A Conceptual Architecture for a Quantum-HPC Middleware [1.82035221675293]
Quantum computing promises potential for science and industry by solving certain computationally complex problems faster than classical computers.
With the increasing scale, systems that facilitate the efficient coupling of quantum-classical computing are becoming critical.
arXiv Detail & Related papers (2023-08-12T16:48:56Z) - QuaSiMo: A Composable Library to Program Hybrid Workflows for Quantum
Simulation [48.341084094844746]
We present a composable design scheme for the development of hybrid quantum/classical algorithms and for applications of quantum simulation.
We implement our design scheme using the hardware-agnostic programming language QCOR into the QuaSiMo library.
arXiv Detail & Related papers (2021-05-17T16:17:57Z) - A backend-agnostic, quantum-classical framework for simulations of
chemistry in C++ [62.997667081978825]
We present the XACC system-level quantum computing framework as a platform for prototyping, developing, and deploying quantum-classical software.
A series of examples demonstrating some of the state-of-the-art chemistry algorithms currently implemented in XACC are presented.
arXiv Detail & Related papers (2021-05-04T16:53:51Z) - Composable Programming of Hybrid Workflows for Quantum Simulation [48.341084094844746]
We present a composable design scheme for the development of hybrid quantum/classical algorithms and for applications of quantum simulation.
We implement our design scheme using the hardware-agnostic programming language QCOR into the QuaSiMo library.
arXiv Detail & Related papers (2021-01-20T14:20:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.