A Conceptual Architecture for a Quantum-HPC Middleware
- URL: http://arxiv.org/abs/2308.06608v1
- Date: Sat, 12 Aug 2023 16:48:56 GMT
- Title: A Conceptual Architecture for a Quantum-HPC Middleware
- Authors: Nishant Saurabh, Shantenu Jha and Andre Luckow
- Abstract summary: Quantum computing promises potential for science and industry by solving certain computationally complex problems faster than classical computers.
With the increasing scale, systems that facilitate the efficient coupling of quantum-classical computing are becoming critical.
- Score: 1.82035221675293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing promises potential for science and industry by solving
certain computationally complex problems faster than classical computers.
Quantum computing systems evolved from monolithic systems towards modular
architectures comprising multiple quantum processing units (QPUs) coupled to
classical computing nodes (HPC). With the increasing scale, middleware systems
that facilitate the efficient coupling of quantum-classical computing are
becoming critical. Through an in-depth analysis of quantum applications,
integration patterns and systems, we identified a gap in understanding
Quantum-HPC middleware systems. We present a conceptual middleware to
facilitate reasoning about quantum-classical integration and serve as the basis
for a future middleware system. An essential contribution of this paper lies in
leveraging well-established high-performance computing abstractions for
managing workloads, tasks, and resources to integrate quantum computing into
HPC systems seamlessly.
Related papers
- Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations implies better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-10-04T06:02:59Z) - Integration of Quantum Accelerators with High Performance Computing -- A
Review of Quantum Programming Tools [0.8477185635891722]
This study aims to characterize existing quantum programming tools (QPTs) from an HPC perspective.
It investigates if existing QPTs have the potential to be efficiently integrated with classical computing models.
This work structures a set of criteria into an analysis blueprint that enables HPC scientists to assess whether a QPT is suitable for the quantum-accelerated classical application.
arXiv Detail & Related papers (2023-09-12T12:24:12Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
We will provide an overview on current full-stack quantum computing systems.
We will emphasize the need for tight co-design among adjacent layers as well as vertical cross-layer design.
arXiv Detail & Related papers (2022-04-13T13:26:56Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - QSOC: Quantum Service-Oriented Computing [3.2786644738211725]
This paper introduces Quantum Service-Oriented Computing (QSOC)
It includes a model-driven methodology to allow enterprise DevOps teams to compose, configure and operate enterprise applications without intimate knowledge on the underlying quantum infrastructure.
It advocates knowledge reuse, separation of concerns, resource optimization, and mixed quantum- & conventional QSOC applications.
arXiv Detail & Related papers (2021-05-04T09:05:10Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.