Rethinking Programming Paradigms in the QC-HPC Context
- URL: http://arxiv.org/abs/2406.03330v1
- Date: Wed, 5 Jun 2024 14:44:19 GMT
- Title: Rethinking Programming Paradigms in the QC-HPC Context
- Authors: Silvina Caino-Lores, Daniel Claudino, Eugene Dumitrescu, Travis S. Humble, Sonia Lopez Alarcon, Elaine Wong,
- Abstract summary: We explore avenues of refinement for the quantum processing unit (QPU) in the context of many-tasks management.
We illustrate how its potential for scientific discovery might be realized.
- Score: 1.1132768046061499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Programming for today's quantum computers is making significant strides toward modern workflows compatible with high performance computing (HPC), but fundamental challenges still remain in the integration of these vastly different technologies. Quantum computing (QC) programming languages share some common ground, as well as their emerging runtimes and algorithmic modalities. In this short paper, we explore avenues of refinement for the quantum processing unit (QPU) in the context of many-tasks management, asynchronous or otherwise, in order to understand the value it can play in linking QC with HPC. Through examples, we illustrate how its potential for scientific discovery might be realized.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Ecosystem-Agnostic Standardization of Quantum Runtime Architecture: Accelerating Utility in Quantum Computing [0.0]
This research covers all layers of Quantum Computing Optimization Middleware (QCOM)
It requires execution on real quantum hardware (QH)
There is a need for a widely adopted runtime platform (RP) driven by the open-source community.
arXiv Detail & Related papers (2024-09-26T16:43:07Z) - Integrating Quantum Computing Resources into Scientific HPC Ecosystems [29.1407119677928]
Quantum Computing offers significant potential to enhance scientific discovery in fields such as quantum chemistry, optimization, and artificial intelligence.
QC faces challenges due to the noisy intermediate-scale quantum era's inherent external noise issues.
This paper outlines plans to unlock new computational possibilities, driving forward scientific inquiry and innovation in a wide array of research domains.
arXiv Detail & Related papers (2024-08-28T22:44:54Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - Integration of Quantum Accelerators with High Performance Computing -- A
Review of Quantum Programming Tools [0.8477185635891722]
This study aims to characterize existing quantum programming tools (QPTs) from an HPC perspective.
It investigates if existing QPTs have the potential to be efficiently integrated with classical computing models.
This work structures a set of criteria into an analysis blueprint that enables HPC scientists to assess whether a QPT is suitable for the quantum-accelerated classical application.
arXiv Detail & Related papers (2023-09-12T12:24:12Z) - A Conceptual Architecture for a Quantum-HPC Middleware [1.82035221675293]
Quantum computing promises potential for science and industry by solving certain computationally complex problems faster than classical computers.
With the increasing scale, systems that facilitate the efficient coupling of quantum-classical computing are becoming critical.
arXiv Detail & Related papers (2023-08-12T16:48:56Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Evolution of Quantum Computing: A Systematic Survey on the Use of
Quantum Computing Tools [5.557009030881896]
We conduct a systematic survey and categorize papers, tools, frameworks, platforms that facilitate quantum computing.
We discuss the current essence, identify open challenges and provide future research direction.
We conclude that scores of frameworks, tools and platforms are emerged in the past few years, improvement of currently available facilities would exploit the research activities in the quantum research community.
arXiv Detail & Related papers (2022-04-04T21:21:12Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.