Variational Mode-Driven Graph Convolutional Network for Spatiotemporal Traffic Forecasting
- URL: http://arxiv.org/abs/2408.16191v3
- Date: Mon, 21 Jul 2025 06:53:30 GMT
- Title: Variational Mode-Driven Graph Convolutional Network for Spatiotemporal Traffic Forecasting
- Authors: Osama Ahmad, Lukas Wesemann, Fabian Waschkowski, Zubair Khalid,
- Abstract summary: We propose a framework that decomposes non-stationary signals into interpretable modes using variation mode decomposition (VMD) and a neural network for future state.<n>The proposed two-stage design yields significant accuracy gains while providing frequency-level interpretability with demonstrated superior performance on the LargeST dataset for both short-term and long-term forecasting tasks.
- Score: 9.24965746838578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on spatiotemporal (ST) traffic prediction using graph neural networks (GNNs). Given that ST data comprises non-stationary and complex temporal patterns, interpreting and predicting such trends is inherently challenging. Representing ST data in decomposed modes helps infer underlying behavior and assess the impact of noise on predictive performance. We propose a framework that decomposes ST data into interpretable modes using variational mode decomposition (VMD) and processes them through a neural network for future state forecasting. Unlike existing graph-based traffic forecasters that operate directly on raw or aggregated time series, the proposed hybrid approach, termed the Variational Mode Graph Convolutional Network (VMGCN), first decomposes non-stationary signals into interpretable variational modes by determining the optimal mode count via reconstruction-loss minimization and then learns both intramode and cross-mode spatiotemporal dependencies through a novel attention-augmented GCN. Additionally, we analyze the significance of each mode and the effect of bandwidth constraints on multi-horizon traffic flow predictions. The proposed two-stage design yields significant accuracy gains while providing frequency-level interpretability with demonstrated superior performance on the LargeST dataset for both short-term and long-term forecasting tasks. The implementation is publicly available on https://github.com/OsamaAhmad369/VMGCN.
Related papers
- Joint Graph Convolution and Sequential Modeling for Scalable Network Traffic Estimation [11.751952500567388]
This study focuses on the challenge of predicting network traffic within complex topological environments.<n>It introduces a Graph Contemporalal Networks (GCN) with Gated Recurrent Units (GRU) modeling approach.<n>The effectiveness of the proposed model is validated through comprehensive experiments on the real-world Abilene network traffic dataset.
arXiv Detail & Related papers (2025-05-12T15:38:19Z) - SFADNet: Spatio-temporal Fused Graph based on Attention Decoupling Network for Traffic Prediction [4.868638426254428]
This paper proposes an innovative traffic flow prediction network, SFADNet, which categorizes traffic flow into multiple traffic patterns based on spatial feature matrices.<n>For each pattern, we construct an independent adaptive-temporal fusion graph based on a cross-attention mechanism, employing residual graph convolution modules and time series modules.<n>Extensive experimental results demonstrate that SFADNet outperforms current state-of-the-art baseline across large four-scale datasets.
arXiv Detail & Related papers (2025-01-07T09:09:50Z) - Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
This study proposes a novel Spatial-temporal Convolutional Network (TL-GPSTGN) based on graph pruning and transfer learning framework.
The results demonstrate the exceptional predictive accuracy of TL-GPSTGN on a single dataset, as well as its robust migration performance across different datasets.
arXiv Detail & Related papers (2024-09-25T00:59:23Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Wavelet-Inspired Multiscale Graph Convolutional Recurrent Network for
Traffic Forecasting [0.0]
We propose a Graph Conal Recurrent Network (WavGCRN) which combines multiscale analysis (MSA)-based method with Deep Learning (DL)-based method.
The proposed method can offer well-defined interpretability, powerful learning capability, and competitive forecasting performance on real-world traffic data sets.
arXiv Detail & Related papers (2024-01-11T16:55:48Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
We propose an approach for predicting traffic that embeds time-varying dynamic network to capture finetemporal patterns of traffic data.
We then use graph convolutional networks to generate traffic forecasts.
Our experimental results on a real traffic dataset demonstrate the superior prediction performance of the proposed method.
arXiv Detail & Related papers (2023-06-12T10:46:31Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
Short-term traffic flow prediction is a vital branch of the Intelligent Traffic System (ITS) and plays an important role in traffic management.
Graph convolution network (GCN) is widely used in traffic prediction models to better deal with the graphical structure data of road networks.
To deal with this drawback, this paper proposes a novel location graph convolutional network (Location-GCN)
arXiv Detail & Related papers (2022-05-10T09:19:12Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Residual Graph Convolutional Recurrent Networks For Multi-step Traffic
Flow Forecasting [12.223433627287605]
We propose a new Spatial-temporal forecasting model, namely the Residual Graph Convolutional Recurrent Network (RGCRN)
The model uses our proposed Residual Graph Convolutional Network (ResGCN) to capture the fine-grained spatial correlation of the traffic road network.
Our comparative experimental results on two real datasets show that RGCRN improves on average by 20.66% compared to the best baseline model.
arXiv Detail & Related papers (2022-05-03T13:23:38Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
We propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN)
PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases.
The proposed model achieves state-of-the-art performance with consistency in all datasets.
arXiv Detail & Related papers (2022-02-18T02:15:44Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.