論文の概要: Iterated Energy-based Flow Matching for Sampling from Boltzmann Densities
- arxiv url: http://arxiv.org/abs/2408.16249v1
- Date: Thu, 29 Aug 2024 04:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 15:05:40.499720
- Title: Iterated Energy-based Flow Matching for Sampling from Boltzmann Densities
- Title(参考訳): ボルツマン密度からのサンプリングのための反復エネルギーベースフローマッチング
- Authors: Dongyeop Woo, Sungsoo Ahn,
- Abstract要約: 非正規化密度から連続正規化フロー(CNF)モデルをトレーニングするための反復エネルギーベースフローマッチング(iEFM)を提案する。
以上の結果から,iEFMは既存の手法よりも優れており,効率的でスケーラブルな確率的モデリングの可能性を示している。
- 参考スコア(独自算出の注目度): 11.850515912491657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we consider the problem of training a generator from evaluations of energy functions or unnormalized densities. This is a fundamental problem in probabilistic inference, which is crucial for scientific applications such as learning the 3D coordinate distribution of a molecule. To solve this problem, we propose iterated energy-based flow matching (iEFM), the first off-policy approach to train continuous normalizing flow (CNF) models from unnormalized densities. We introduce the simulation-free energy-based flow matching objective, which trains the model to predict the Monte Carlo estimation of the marginal vector field constructed from known energy functions. Our framework is general and can be extended to variance-exploding (VE) and optimal transport (OT) conditional probability paths. We evaluate iEFM on a two-dimensional Gaussian mixture model (GMM) and an eight-dimensional four-particle double-well potential (DW-4) energy function. Our results demonstrate that iEFM outperforms existing methods, showcasing its potential for efficient and scalable probabilistic modeling in complex high-dimensional systems.
- Abstract(参考訳): 本研究では,エネルギー関数の評価や非正規化密度からジェネレータを訓練する問題を考察する。
これは確率的推論における根本的な問題であり、分子の3次元座標分布の学習などの科学的応用に不可欠である。
この問題を解決するために,非正規化密度から連続正規化フロー(CNF)モデルをトレーニングするための最初のオフ政治手法である反復エネルギーベースフローマッチング(iEFM)を提案する。
本稿では, モンテカルロモデルを用いて, 既知エネルギー関数から構築した限界ベクトル場の推定を行うシミュレーションフリーなエネルギーベースフローマッチング手法を提案する。
我々のフレームワークは汎用的で、分散露光(VE)および最適輸送(OT)条件付き確率パスに拡張することができる。
二次元ガウス混合モデル (GMM) と8次元4粒子ダブルウェルポテンシャル (DW-4) のエネルギー関数を用いたiEFMの評価を行った。
以上の結果から,iEFMは既存の手法よりも優れており,複雑な高次元システムにおける効率的かつスケーラブルな確率的モデリングの可能性を示している。
関連論文リスト
- Zero-point energy of tensor fluctuations on the MPS manifold [0.05524804393257919]
本研究では, 行列積状態(MPS)多様体を用いた高相関磁気系における低エネルギー物理の研究手法を提案する。
我々は,MPSにより基底状態がより良く表現されるシステムに,ある種の低絡磁材料をモデル化することに成功しているスピン波アプローチを適用した。
論文 参考訳(メタデータ) (2024-10-29T18:00:02Z) - Hessian-Informed Flow Matching [4.542719108171107]
Hessian-Informed Flow Matchingは、エネルギー関数のHessianを条件流に統合する新しいアプローチである。
この積分により、HI-FMは局所曲率と異方性共分散構造を考慮できる。
MNIST と Lennard-Jones 粒子のデータセットに関する実証的な評価は、HI-FM が試験サンプルの可能性を改善していることを示している。
論文 参考訳(メタデータ) (2024-10-15T09:34:52Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
フローマッチング (FM) は, シミュレーションのない生成モデルとして注目されている。
本稿では,大試料径のFMの収束特性を$p$-Wasserstein 距離で論じる。
我々は、FMが1leq p leq 2$でほぼ最小の収束率を達成できることを確立し、FMが拡散モデルに匹敵する収束率に達するという最初の理論的証拠を示す。
論文 参考訳(メタデータ) (2024-05-31T14:54:51Z) - Equivariant Flow Matching with Hybrid Probability Transport [69.11915545210393]
拡散モデル (DM) は, 特徴量の多いジオメトリの生成に有効であることを示した。
DMは通常、非効率なサンプリング速度を持つ不安定な確率力学に悩まされる。
等変モデリングと安定化確率力学の両方の利点を享受する幾何フローマッチングを導入する。
論文 参考訳(メタデータ) (2023-12-12T11:13:13Z) - Equivariant flow matching [0.9208007322096533]
等変連続正規化流(CNF)の新しい訓練目標である等変フローマッチングを導入する。
等変流マッチングは、標的エネルギーの物理対称性を利用して、同変CNFの効率的でシミュレーションなしな訓練を行う。
この結果から,同変フローマッチングの対象は,従来の手法に比べて,より短い積分経路,サンプリング効率の向上,スケーラビリティの向上を図っている。
論文 参考訳(メタデータ) (2023-06-26T19:40:10Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
連続正規化フロー(CNF)のための一般条件流整合(CFM)技術を導入する。
CFMは、拡散モデルのフローをトレーニングするために使用されるような安定した回帰目標を特徴としているが、決定論的フローモデルの効率的な推論を好んでいる。
我々の目的の変種は最適輸送CFM (OT-CFM) であり、訓練がより安定し、より高速な推論をもたらすより単純なフローを生成する。
論文 参考訳(メタデータ) (2023-02-01T14:47:17Z) - Rigid Body Flows for Sampling Molecular Crystal Structures [4.368185344922342]
三次元空間における複数物体の位置と向きをモデル化するための新しいタイプの正規化フローを提案する。
まず、単位四元数群上の滑らかで表現力のある流れを定義し、剛体の連続的な回転運動を捉える。
TIP4P水モデルでは,外部磁場における四面体系の多モード密度と氷XI相の2つの分子例に対してボルツマン発電機を訓練して評価を行った。
論文 参考訳(メタデータ) (2023-01-26T19:07:40Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Smooth Normalizing Flows [0.0]
コンパクト区間とハイパートリの両方に作用する滑らかな混合変換のクラスを導入する。
このような逆関数は、逆関数定理を通じて前方評価から計算可能であることを示す。
このような滑らかな流れの2つの利点は、シミュレーションデータと力のマッチングによるトレーニングが可能であり、分子動力学シミュレーションのポテンシャルとして利用できることである。
論文 参考訳(メタデータ) (2021-10-01T12:27:14Z) - E(n) Equivariant Normalizing Flows for Molecule Generation in 3D [87.12477361140716]
本稿ではユークリッド対称性に同値な生成モデルを紹介する: E(n) 等変正規化フロー(E-NFs)
私たちの知る限りでは、これは3Dで分子を生成する可能性に基づく最初の深層生成モデルである。
論文 参考訳(メタデータ) (2021-05-19T09:28:54Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。