論文の概要: Inversion Circle Interpolation: Diffusion-based Image Augmentation for Data-scarce Classification
- arxiv url: http://arxiv.org/abs/2408.16266v2
- Date: Thu, 21 Nov 2024 08:16:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:16:10.167836
- Title: Inversion Circle Interpolation: Diffusion-based Image Augmentation for Data-scarce Classification
- Title(参考訳): Inversion Circle Interpolation:Diffusion-based Image Augmentation for Data-Scarce Classification (特集:情報処理)
- Authors: Yanghao Wang, Long Chen,
- Abstract要約: 拡散に基づくDA法は,高品質なサンプルを生成する上で重要な2つの鍵である忠実さと多様性の両方を考慮できない。
拡散に基づく新しいDA法Diff-IIを提案する。
- 参考スコア(独自算出の注目度): 6.442738337380714
- License:
- Abstract: Data Augmentation (DA), i.e., synthesizing faithful and diverse samples to expand the original training set, is a prevalent and effective strategy to improve the performance of various data-scarce tasks. With the powerful image generation ability, diffusion-based DA has shown strong performance gains on different image classification benchmarks. In this paper, we analyze today's diffusion-based DA methods, and argue that they cannot take account of both faithfulness and diversity, which are two critical keys for generating high-quality samples and boosting classification performance. To this end, we propose a novel Diffusion-based DA method: Diff-II. Specifically, it consists of three steps: 1) Category concepts learning: Learning concept embeddings for each category. 2) Inversion interpolation: Calculating the inversion for each image, and conducting circle interpolation for two randomly sampled inversions from the same category. 3) Two-stage denoising: Using different prompts to generate synthesized images in a coarse-to-fine manner. Extensive experiments on various data-scarce image classification tasks (e.g., few-shot, long-tailed, and out-of-distribution classification) have demonstrated its effectiveness over state-of-the-art diffusion-based DA methods.
- Abstract(参考訳): データ強化(DA)、すなわち、忠実で多様なサンプルを合成して元のトレーニングセットを拡張することは、様々なデータ共有タスクのパフォーマンスを改善するための一般的かつ効果的な戦略である。
画像の強力な生成能力により、拡散に基づくDAは、異なる画像分類ベンチマークで大きなパフォーマンス向上を示した。
本稿では,現代における拡散型DA手法を解析し,高品質なサンプルの生成と分類性能の向上に欠かせない2つの鍵である,忠実さと多様性を両立できないことを論じる。
そこで本研究では,新しい拡散型DA法Diff-IIを提案する。
具体的には3つのステップから構成される。
1) カテゴリー概念の学習: カテゴリ毎に概念の埋め込みを学習する。
2) インバージョン補間: 各画像のインバージョンを計算し、同じカテゴリからランダムにサンプリングされた2つのインバージョンに対して円補間を行う。
3)2段階認知: 異なるプロンプトを用いて合成画像を粗く微妙に生成する。
様々なデータスカース画像分類タスク(例: 少数ショット, ロングテール, アウト・オブ・ディストリビューション分類)に対する大規模な実験は, 最先端拡散に基づくDA法に対する効果を実証している。
関連論文リスト
- Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - Stable Diffusion for Data Augmentation in COCO and Weed Datasets [5.81198182644659]
本研究は, 安定拡散モデルの有効性を評価するために, 7つの共通カテゴリーと3つの広く分布する雑草種を利用した。
安定拡散に基づく3つの手法(画像から画像への変換,ドリームブース,コントロールネット)を,焦点の異なる画像生成に利用した。
そして、これらの合成画像に基づいて分類・検出タスクを行い、その性能を原画像で訓練されたモデルと比較した。
論文 参考訳(メタデータ) (2023-12-07T02:23:32Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
本稿では,拡散過程下での1つのフレームワークに,モダクティブと差別的事前学習を統一するDiffDisを提案する。
DiffDisは画像生成タスクと画像テキスト識別タスクの両方において単一タスクモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T05:03:48Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
GAN(Generative Adversarial Network)を用いたクラス条件画像生成について,様々な手法を用いて検討した。
本稿では,DuDGANと呼ばれる2次元拡散型ノイズ注入法を取り入れたGANを用いたクラス条件画像生成手法を提案する。
提案手法は,画像生成のための現状条件付きGANモデルよりも性能的に優れている。
論文 参考訳(メタデータ) (2023-05-24T07:59:44Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
本稿では,従来のプラグアンドプレイ方式を拡散サンプリングフレームワークに統合したDiffPIRを提案する。
DiffPIRは、差別的なガウスのデノイザーに依存するプラグアンドプレイIR法と比較して、拡散モデルの生成能力を継承することが期待されている。
論文 参考訳(メタデータ) (2023-05-15T20:24:38Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
大規模テキスト・画像拡散モデルからの密度推定をゼロショット分類に活用できることを示す。
分類に対する我々の生成的アプローチは、様々なベンチマークで強い結果が得られる。
我々の結果は、下流タスクにおける差別的モデルよりも生成的な利用に向けての一歩である。
論文 参考訳(メタデータ) (2023-03-28T17:59:56Z) - DiffMIC: Dual-Guidance Diffusion Network for Medical Image
Classification [32.67098520984195]
一般医用画像分類のための拡散モデル(DiffMIC)を提案する。
実験の結果,DiffMICは最先端の手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2023-03-19T09:15:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。