論文の概要: Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic
- arxiv url: http://arxiv.org/abs/2408.16326v1
- Date: Thu, 29 Aug 2024 08:02:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-30 14:32:51.692832
- Title: Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic
- Title(参考訳): Critic-CoT: Chain-of-thinkts Criticによる大規模言語モデルの推論能力向上
- Authors: Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji, Hongyu Lin, Yaojie Lu, Xianpei Han, Debing Zhang, Le Sun,
- Abstract要約: Critic-CoTは、ステップワイズCoT推論フォーマットと遠方のスーパービジョンデータ構築を通じて、LLMをSystem-2のような批判能力にプッシュするフレームワークである。
GSM8KとMATHの実験により,改良されたモデルによりタスク解決性能が向上し,本手法の有効性が示された。
- 参考スコア(独自算出の注目度): 48.94340387130627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-critic has become an important mechanism for enhancing the reasoning performance of LLMs. However, current approaches mainly involve basic prompts without further training, which tend to be over-simplified, leading to limited accuracy.Moreover, there is a lack of in-depth investigation of the relationship between LLM's ability to criticism and its task-solving performance.To address these issues, we propose Critic-CoT, a novel framework that pushes LLMs toward System-2-like critic capability, via step-wise CoT reasoning format and distant-supervision data construction, without the need for human annotation. Experiments on GSM8K and MATH show that via filtering out invalid solutions or iterative refinement, our enhanced model boosts task-solving performance, which demonstrates the effectiveness of our method. Further, we find that training on critique and refinement alone improves the generation. We hope our work could shed light on future research on improving the reasoning and critic ability of LLMs.
- Abstract(参考訳): 自己批判はLLMの推論性能を高める重要なメカニズムとなっている。
しかし、近年のアプローチは、過度に単純化され、精度が制限される基本的プロンプトを主に含んでいるが、その一方で、LCMの批判能力と課題解決性能の関係について、詳細な調査は行われていないため、人間のアノテーションを必要とせず、段階的にCoT推論フォーマットと遠隔スーパービジョンデータ構築を介し、ILMをシステム2のような批判能力に推し進める新しいフレームワークであるCrytic-CoTを提案する。
GSM8K と MATH の実験により,無効解のフィルタリングや反復改善により,改良されたモデルによりタスク解決性能が向上し,本手法の有効性が示された。
さらに,批判と改善の訓練だけで世代を改善できることが判明した。
LLMの推論と批判能力を改善するための今後の研究に光を当てることを願っています。
関連論文リスト
- DeepCritic: Deliberate Critique with Large Language Models [77.5516314477878]
我々は,Large Language Models(LLMs)の数学批判能力の研究と向上に焦点をあてる。
Qwen2.5-7B-Instructをベースとした批判モデルを開発した。
論文 参考訳(メタデータ) (2025-05-01T17:03:17Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
近年のLRM(Large Reasoning Models)の進歩は、特殊推論タスクにおいて顕著な性能を示している。
議論的推論能力の獲得は, LRMの基礎的能力を大幅に低下させることを示す。
適応推論(Zero-Thinking, Less-Thinking, Summary-Thinking)がこれらの欠点を効果的に軽減できることを示します。
論文 参考訳(メタデータ) (2025-03-23T08:18:51Z) - RealCritic: Towards Effectiveness-Driven Evaluation of Language Model Critiques [59.861013614500024]
我々は,Large Language Models (LLMs) の批判能力を評価するために設計された新しいベンチマークを導入する。
通常、オープンループ方式で機能する既存のベンチマークとは異なり、我々のアプローチでは、批判から生成された修正の質を評価するクローズドループ手法を採用している。
論文 参考訳(メタデータ) (2025-01-24T13:48:10Z) - Enabling Scalable Oversight via Self-Evolving Critic [59.861013614500024]
SCRIT(Self-evolving CRITic)は、批評能力の真の自己進化を可能にするフレームワークである。
コントラストベースの自己批判によって生成される合成データのトレーニングによって自己改善する。
最大で10.3%の改善が達成されている。
論文 参考訳(メタデータ) (2025-01-10T05:51:52Z) - Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning [46.411313304605564]
Critic-Vは、視覚言語モデル(VLM)の推論能力を高めるためにアクター・クライブパラダイムにインスパイアされたフレームワークである。
リアソナーは視覚的およびテキスト的入力に基づいて推論パスを生成し、批判はこれらのパスを洗練するための建設的批評を提供する。
評価の結果,Critic-V フレームワークは GPT-4V を含む既存手法を8つのベンチマークのうち5つで大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-27T10:28:57Z) - Training Language Models to Critique With Multi-agent Feedback [102.42751835338233]
MultiCritique パイプラインはマルチエージェントフィードバックを利用することで LLM の批判能力を向上させる。
パイプラインは、単一のモデルではなく、複数のエージェントからの高品質な批評を集約する。
我々の微調整された7Bモデルは、他の高度な7B-13Bオープンソースモデルを大きく上回っている。
論文 参考訳(メタデータ) (2024-10-20T04:57:45Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
大規模言語モデル(LLM)は、医療などの重要な領域における現実世界のアプリケーションにますます採用されている。
これらのモデルによって生成されたCoT(Chain-of-Thought)推論が、その基盤となる振る舞いを忠実に捉えることが重要である。
論文 参考訳(メタデータ) (2024-06-15T13:16:44Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - CriticBench: Benchmarking LLMs for Critique-Correct Reasoning [26.45110574463893]
CriticBenchは、大規模言語モデルの推論を批判し修正する能力を評価するために設計されたベンチマークである。
生成, 批判, 修正推論における17個のLLMの性能を評価し, 評価した。
論文 参考訳(メタデータ) (2024-02-22T18:59:02Z) - Critique Ability of Large Language Models [38.34144195927209]
本研究では,大規模言語モデル(LLM)が様々なタスクに対して正確な批評を提供する能力について検討する。
我々は,高品質な自然言語クエリとそれに対応するモデル応答からなるCriticBenchというベンチマークを開発した。
論文 参考訳(メタデータ) (2023-10-07T14:12:15Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。