論文の概要: Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic
- arxiv url: http://arxiv.org/abs/2408.16326v2
- Date: Thu, 10 Oct 2024 06:42:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 04:19:50.127430
- Title: Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic
- Title(参考訳): Critic-CoT: Chain-of-thinkts Criticによる大規模言語モデルの推論能力向上
- Authors: Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji, Hongyu Lin, Yaojie Lu, Xianpei Han, Debing Zhang, Le Sun,
- Abstract要約: Critic-CoTは、LLMをSystem-2のような批判能力にプッシュするフレームワークである。
人間のアノテーションを使わずにCoT推論パラダイムと遠隔スーパービジョンデータの自動構築
GSM8KとMATHの実験は、我々の強化されたモデルがタスク解決性能を大幅に向上させることを示した。
- 参考スコア(独自算出の注目度): 48.94340387130627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-critic has become a crucial mechanism for enhancing the reasoning performance of LLMs. However, current approaches mainly involve basic prompts for intuitive instance-level feedback, which resembles System-1 processes and limits the reasoning capabilities. Moreover, there is a lack of in-depth investigations into the relationship between LLM's ability to criticize and its task-solving performance. To address these issues, we propose Critic-CoT, a novel framework that pushes LLMs toward System-2-like critic capability. Through a step-wise CoT reasoning paradigm and the automatic construction of distant-supervision data without human annotation, Critic-CoT enables LLMs to engage in slow, analytic self-critique and refinement, thereby improving their reasoning abilities. Experiments on GSM8K and MATH demonstrate that our enhanced model significantly boosts task-solving performance by filtering out invalid solutions or iterative refinement. Furthermore, we investigate the intrinsic correlation between critique and task-solving abilities within LLMs, discovering that these abilities can mutually reinforce each other rather than conflict.
- Abstract(参考訳): 自己批判はLLMの推論性能を高める重要なメカニズムとなっている。
しかしながら、現在のアプローチは主に、System-1プロセスに類似し、推論能力を制限する直感的なインスタンスレベルのフィードバックのための基本的なプロンプトを含んでいる。
さらに,LLMの批判能力と課題解決性能との関係について,詳細な調査は行われていない。
これらの問題に対処するために,LLMをシステム2のような批判能力に向かわせる新しいフレームワークであるCritic-CoTを提案する。
ステップワイズなCoT推論パラダイムと人間のアノテーションを使わずに遠隔スーパービジョンデータの自動構築を通じて、Critic-CoTはLCMをゆっくりと分析的な自己批判と洗練に関与させ、推論能力を向上させる。
GSM8KとMATHの実験では、拡張モデルにより、無効解のフィルタリングや反復改善によりタスク解決性能が大幅に向上することを示した。
さらに,LLMにおける批判と課題解決能力の本質的相関を考察し,これらの能力が対立よりも相互に強化可能であることを明らかにする。
関連論文リスト
- Training Language Models to Critique With Multi-agent Feedback [102.42751835338233]
MultiCritique パイプラインはマルチエージェントフィードバックを利用することで LLM の批判能力を向上させる。
パイプラインは、単一のモデルではなく、複数のエージェントからの高品質な批評を集約する。
我々の微調整された7Bモデルは、他の高度な7B-13Bオープンソースモデルを大きく上回っている。
論文 参考訳(メタデータ) (2024-10-20T04:57:45Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
大規模言語モデル(LLM)は、医療などの重要な領域における現実世界のアプリケーションにますます採用されている。
これらのモデルによって生成されたCoT(Chain-of-Thought)推論が、その基盤となる振る舞いを忠実に捉えることが重要である。
論文 参考訳(メタデータ) (2024-06-15T13:16:44Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - CriticBench: Benchmarking LLMs for Critique-Correct Reasoning [26.45110574463893]
CriticBenchは、大規模言語モデルの推論を批判し修正する能力を評価するために設計されたベンチマークである。
生成, 批判, 修正推論における17個のLLMの性能を評価し, 評価した。
論文 参考訳(メタデータ) (2024-02-22T18:59:02Z) - Critique Ability of Large Language Models [38.34144195927209]
本研究では,大規模言語モデル(LLM)が様々なタスクに対して正確な批評を提供する能力について検討する。
我々は,高品質な自然言語クエリとそれに対応するモデル応答からなるCriticBenchというベンチマークを開発した。
論文 参考訳(メタデータ) (2023-10-07T14:12:15Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。