TG-PhyNN: An Enhanced Physically-Aware Graph Neural Network framework for forecasting Spatio-Temporal Data
- URL: http://arxiv.org/abs/2408.16379v1
- Date: Thu, 29 Aug 2024 09:41:17 GMT
- Title: TG-PhyNN: An Enhanced Physically-Aware Graph Neural Network framework for forecasting Spatio-Temporal Data
- Authors: Zakaria Elabid, Lena Sasal, Daniel Busby, Abdenour Hadid,
- Abstract summary: This work presents TG-PhyNN, a novel Temporal Graph Physics-Informed Neural Network framework.
TG-PhyNN leverages the power of GNNs for graph-based modeling while simultaneously incorporating physical constraints as a guiding principle during training.
Our findings demonstrate that TG-PhyNN significantly outperforms traditional forecasting models.
TG-PhyNN effectively exploits to offer more reliable and accurate forecasts in various domains where physical processes govern the dynamics of data.
- Score: 3.268628956733623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately forecasting dynamic processes on graphs, such as traffic flow or disease spread, remains a challenge. While Graph Neural Networks (GNNs) excel at modeling and forecasting spatio-temporal data, they often lack the ability to directly incorporate underlying physical laws. This work presents TG-PhyNN, a novel Temporal Graph Physics-Informed Neural Network framework. TG-PhyNN leverages the power of GNNs for graph-based modeling while simultaneously incorporating physical constraints as a guiding principle during training. This is achieved through a two-step prediction strategy that enables the calculation of physical equation derivatives within the GNN architecture. Our findings demonstrate that TG-PhyNN significantly outperforms traditional forecasting models (e.g., GRU, LSTM, GAT) on real-world spatio-temporal datasets like PedalMe (traffic flow), COVID-19 spread, and Chickenpox outbreaks. These datasets are all governed by well-defined physical principles, which TG-PhyNN effectively exploits to offer more reliable and accurate forecasts in various domains where physical processes govern the dynamics of data. This paves the way for improved forecasting in areas like traffic flow prediction, disease outbreak prediction, and potentially other fields where physics plays a crucial role.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction [40.58819011476455]
This paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet)
We leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks.
Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios.
arXiv Detail & Related papers (2024-02-06T07:55:54Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field.
We propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework.
Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin.
arXiv Detail & Related papers (2022-09-01T04:58:18Z) - Physics Constrained Flow Neural Network for Short-Timescale Predictions
in Data Communications Networks [31.85361736992165]
This paper introduces Flow Neural Network (FlowNN) to improve the feature representation with learned physical bias.
FlowNN achieves 17% - 71% of loss decrease than the state-of-the-art baselines on both synthetic and real-world networking datasets.
arXiv Detail & Related papers (2021-12-23T02:41:00Z) - Physics-enhanced Neural Networks in the Small Data Regime [0.0]
We show that by considering the actual energy level as a regularization term during training, the results can be further improved.
Especially in the case where only small amounts of data are available, these improvements can significantly enhance the predictive capability.
arXiv Detail & Related papers (2021-11-19T17:21:14Z) - Spatially Focused Attack against Spatiotemporal Graph Neural Networks [8.665638585791235]
Deep Spatiotemporal graph neural networks (GNNs) have achieved great success in traffic forecasting applications.
If GNNs are vulnerable in real-world prediction applications, a hacker can easily manipulate the results and cause serious traffic congestion and even a city-scale breakdown.
arXiv Detail & Related papers (2021-09-10T01:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.