論文の概要: HYGENE: A Diffusion-based Hypergraph Generation Method
- arxiv url: http://arxiv.org/abs/2408.16457v2
- Date: Mon, 21 Oct 2024 08:47:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 04:19:50.113775
- Title: HYGENE: A Diffusion-based Hypergraph Generation Method
- Title(参考訳): HYGENE:拡散型ハイパーグラフ生成法
- Authors: Dorian Gailhard, Enzo Tartaglione, Lirida Naviner, Jhony H. Giraldo,
- Abstract要約: 本稿では, 局所展開の進展による課題に対処する拡散型ハイパーグラフ生成(HYGENE)手法を提案する。
実験では、ハイジェネの有効性を示し、ハイパーグラフの様々な特性を忠実に模倣する能力を示した。
- 参考スコア(独自算出の注目度): 6.997955138726617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypergraphs are powerful mathematical structures that can model complex, high-order relationships in various domains, including social networks, bioinformatics, and recommender systems. However, generating realistic and diverse hypergraphs remains challenging due to their inherent complexity and lack of effective generative models. In this paper, we introduce a diffusion-based Hypergraph Generation (HYGENE) method that addresses these challenges through a progressive local expansion approach. HYGENE works on the bipartite representation of hypergraphs, starting with a single pair of connected nodes and iteratively expanding it to form the target hypergraph. At each step, nodes and hyperedges are added in a localized manner using a denoising diffusion process, which allows for the construction of the global structure before refining local details. Our experiments demonstrated the effectiveness of HYGENE, proving its ability to closely mimic a variety of properties in hypergraphs. To the best of our knowledge, this is the first attempt to employ deep learning models for hypergraph generation, and our work aims to lay the groundwork for future research in this area.
- Abstract(参考訳): ハイパーグラフは、ソーシャルネットワーク、バイオインフォマティクス、レコメンデーションシステムなど、様々な領域における複雑な高次関係をモデル化できる強力な数学的構造である。
しかし、本質的な複雑さと効果的な生成モデルがないため、現実的で多様なハイパーグラフを生成することは依然として困難である。
本稿では,これらの課題に対処する拡散型ハイパーグラフ生成(HYGENE)手法を提案する。
HYGENEはハイパーグラフの2部表現に取り組み、1対の接続ノードから始まり、それを反復的に拡張してターゲットハイパーグラフを形成する。
各ステップにおいて、ノードとハイパーエッジは局所的な方法でデノナイジング拡散プロセスによって追加され、局所的な詳細を精製する前にグローバル構造を構築することができる。
実験ではハイジェネの有効性を実証し、ハイパーグラフの様々な特性を忠実に模倣する能力を示した。
我々の知る限りでは、これはハイパーグラフ生成にディープラーニングモデルを採用する最初の試みであり、我々の研究はこの分野における将来の研究の基盤となることを目的としている。
関連論文リスト
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - Sheaf Hypergraph Networks [10.785525697855498]
本稿では,従来のハイパーグラフに余分な構造を加える数学的構造であるハイパーグラフのセルシーブを紹介する。
文献中の既存のラプラシアンからインスピレーションを得て、我々は2つの独特なシェフハイパーグラフラプラシアンの定式化を開発した。
我々は、これらの層ハイパーグラフラプラシアンを用いて、層ハイパーグラフニューラルネットワークと層ハイパーグラフ畳み込みニューラルネットワークの2つのモデルのカテゴリを設計する。
論文 参考訳(メタデータ) (2023-09-29T10:25:43Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
我々は,新しいアジャケーシテンソルベースのtextbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN) を提案する。
THNNは高次外装機能パッシングメッセージを通じて、忠実なハイパーグラフモデリングフレームワークである。
3次元視覚オブジェクト分類のための2つの広く使われているハイパーグラフデータセットの実験結果から、モデルの有望な性能を示す。
論文 参考訳(メタデータ) (2023-06-05T03:26:06Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
我々は、ハイパーグラフニューラルネットワークの一般化性を改善するために、画像/グラフからの対照的な学習アプローチ(ハイパーGCLと呼ぶ)を適用する。
我々は、高次関係を符号化したハイパーエッジを増大させる2つのスキームを作成し、グラフ構造化データから3つの拡張戦略を採用する。
拡張ビューを生成するためのハイパーグラフ生成モデルを提案し、次に、ハイパーグラフ拡張とモデルパラメータを協調的に学習するエンド・ツー・エンドの微分可能なパイプラインを提案する。
論文 参考訳(メタデータ) (2022-10-07T20:12:20Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
本稿では,EDVWおよびEIVWハイパーグラフを処理可能な一般学習フレームワークであるGeneral Hypergraph Spectral Convolution(GHSC)を提案する。
本稿では,提案するフレームワークが最先端の性能を達成できることを示す。
ソーシャルネットワーク分析,視覚的客観的分類,タンパク質学習など,様々な分野の実験により,提案手法が最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2022-03-31T10:46:47Z) - Adaptive Neural Message Passing for Inductive Learning on Hypergraphs [21.606287447052757]
本稿では,新しいハイパーグラフ学習フレームワークHyperMSGを紹介する。
各ノードの次数集中度に関連する注意重みを学習することで、データとタスクに適応する。
堅牢で、幅広いタスクやデータセットで最先端のハイパーグラフ学習手法より優れています。
論文 参考訳(メタデータ) (2021-09-22T12:24:02Z) - Learning Multi-Granular Hypergraphs for Video-Based Person
Re-Identification [110.52328716130022]
ビデオベースの人物識別(re-ID)はコンピュータビジョンにおいて重要な研究課題である。
MGH(Multi-Granular Hypergraph)という新しいグラフベースのフレームワークを提案する。
MARSの90.0%のトップ-1精度はMGHを用いて達成され、最先端のスキームよりも優れていた。
論文 参考訳(メタデータ) (2021-04-30T11:20:02Z) - Generative hypergraph clustering: from blockmodels to modularity [26.99290024958576]
異質なノード度とエッジサイズを持つクラスタ化ハイパーグラフの表現的生成モデルを提案する。
我々は,100万ノードの合成ハイパーグラフを用いた実験など,ハイパーグラフ・ルーバインは高度にスケーラブルであることを示す。
このモデルを用いて,学校連絡ネットワークにおける高次構造の異なるパターン,米国議会法案共同提案,米国議会委員会,共同購入行動における製品カテゴリ,ホテルロケーションを分析した。
論文 参考訳(メタデータ) (2021-01-24T00:25:22Z) - HyperSAGE: Generalizing Inductive Representation Learning on Hypergraphs [24.737560790401314]
2段階のニューラルメッセージパッシング戦略を用いて、ハイパーグラフを介して情報を正確かつ効率的に伝播する新しいハイパーグラフ学習フレームワークHyperSAGEを提案する。
本稿では,HyperSAGEが代表的ベンチマークデータセット上で最先端のハイパーグラフ学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-09T13:28:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。