論文の概要: An Exploratory Deep Learning Approach for Predicting Subsequent Suicidal Acts in Chinese Psychological Support Hotlines
- arxiv url: http://arxiv.org/abs/2408.16463v1
- Date: Thu, 29 Aug 2024 11:51:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:02:47.157048
- Title: An Exploratory Deep Learning Approach for Predicting Subsequent Suicidal Acts in Chinese Psychological Support Hotlines
- Title(参考訳): 中国の心理支援ホットラインにおける後続の自殺行為予測のための探索的深層学習アプローチ
- Authors: Changwei Song, Qing Zhao, Jianqiang Li, Yining Chen, Yongsheng Tong, Guanghui Fu,
- Abstract要約: 自殺リスク評価のためのスケールベースの予測手法の精度は、オペレーターの専門性によって大きく異なる可能性がある。
本研究は,中国における自殺リスクを予測するために,長期音声データにディープラーニングを適用した最初の事例である。
- 参考スコア(独自算出の注目度): 13.59130559079134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Psychological support hotlines are an effective suicide prevention measure that typically relies on professionals using suicide risk assessment scales to predict individual risk scores. However, the accuracy of scale-based predictive methods for suicide risk assessment can vary widely depending on the expertise of the operator. This limitation underscores the need for more reliable methods, prompting this research's innovative exploration of the use of artificial intelligence to improve the accuracy and efficiency of suicide risk prediction within the context of psychological support hotlines. The study included data from 1,549 subjects from 2015-2017 in China who contacted a psychological support hotline. Each participant was followed for 12 months to identify instances of suicidal behavior. We proposed a novel multi-task learning method that uses the large-scale pre-trained model Whisper for feature extraction and fits psychological scales while predicting the risk of suicide. The proposed method yields a 2.4\% points improvement in F1-score compared to the traditional manual approach based on the psychological scales. Our model demonstrated superior performance compared to the other eight popular models. To our knowledge, this study is the first to apply deep learning to long-term speech data to predict suicide risk in China, indicating grate potential for clinical applications. The source code is publicly available at: \url{https://github.com/songchangwei/Suicide-Risk-Prediction}.
- Abstract(参考訳): 心理的サポートホットライン(英: Psychological Support hotlines)は、一般的に個人リスクスコアを予測するために、自殺リスク評価尺度を使用する専門家に頼っている効果的な自殺予防対策である。
しかし,自殺リスク評価の尺度に基づく予測手法の精度は,作業者の専門性によって大きく異なる可能性がある。
この制限は、より信頼性の高い方法の必要性を強調し、心理学的支援ホットラインの文脈における自殺リスク予測の正確性と効率を改善するために、この研究が人工知能の使用を革新的に探求するきっかけとなった。
調査には、2015-2017年に中国で精神支援ホットラインに接触した1,549人の被験者からのデータが含まれていた。
各被験者は自殺行為の事例を特定するために12ヶ月間追跡された。
本研究では,大規模事前学習モデルWhisperを特徴抽出に利用し,自殺リスクを予測しながら心理的な尺度に適合するマルチタスク学習手法を提案する。
提案手法は,心理学的尺度に基づく従来の手動アプローチに比べてF1スコアが2.4 %向上した。
我々のモデルは、他の8つの人気モデルと比較して優れた性能を示した。
本研究は,中国における自殺リスクを予測するために,長期音声データにディープラーニングを適用した最初の事例であり,臨床応用の可能性を示している。
ソースコードは: \url{https://github.com/songchangwei/Suicide-Risk-Prediction}で公開されている。
関連論文リスト
- Deep Learning and Large Language Models for Audio and Text Analysis in Predicting Suicidal Acts in Chinese Psychological Support Hotlines [13.59130559079134]
中国では毎年200万人が自殺を企てており、多くの人が複数の試みをしている。
深層学習モデルと大規模言語モデル(LLM)がメンタルヘルスの分野に導入されている。
本研究は、1284名の被験者を対象とし、ディープラーニングモデルとLLMが、ホットラインからの音声および転写テキストを用いて、自殺リスクを効果的に予測できるかどうかを検証するように設計された。
論文 参考訳(メタデータ) (2024-09-10T02:22:50Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - SOS-1K: A Fine-grained Suicide Risk Classification Dataset for Chinese Social Media Analysis [22.709733830774788]
本研究では,自殺リスクの詳細な分類を目的とした,中国のソーシャルメディアデータセットを提案する。
事前訓練した7つのモデルについて, 自殺リスクが高い, 自殺リスクが少ない, 自殺リスクの細かい分類が0~10の2つのタスクで評価された。
ディープラーニングモデルは高い自殺リスクと低い自殺リスクを区別する上で優れた性能を示し、最良のモデルはF1スコア88.39%である。
論文 参考訳(メタデータ) (2024-04-19T06:58:51Z) - Non-Invasive Suicide Risk Prediction Through Speech Analysis [74.8396086718266]
自動自殺リスク評価のための非侵襲的音声ベースアプローチを提案する。
我々は、wav2vec、解釈可能な音声・音響特徴、深層学習に基づくスペクトル表現の3つの特徴セットを抽出する。
我々の最も効果的な音声モデルは、6.6.2,%$のバランスの取れた精度を達成する。
論文 参考訳(メタデータ) (2024-04-18T12:33:57Z) - Navigating the OverKill in Large Language Models [84.62340510027042]
モデルがどのように処理し,クエリの安全性を判断するかを検討することで,過剰スキルの要因について検討する。
以上の結果から,モデル内にショートカットが存在することが明らかとなり,"キル"のような有害な単語が過剰に認識され,安全性が強調され,過度なスキルが増すことが示唆された。
我々は、この現象を緩和するために、トレーニングフリーでモデルに依存しないセルフコントラストデコーディング(Self-Contrastive Decoding、CD)を導入する。
論文 参考訳(メタデータ) (2024-01-31T07:26:47Z) - Zero-shot causal learning [64.9368337542558]
CaMLは因果メタラーニングフレームワークであり、各介入の効果をタスクとしてパーソナライズした予測を定式化する。
トレーニング時に存在しない新規介入のパーソナライズされた効果を予測することができることを示す。
論文 参考訳(メタデータ) (2023-01-28T20:14:11Z) - Am I No Good? Towards Detecting Perceived Burdensomeness and Thwarted
Belongingness from Suicide Notes [51.378225388679425]
本稿では,自殺ノートから知覚的バーデンサムネス(PB)とThwarted Belongingness(TB)を検出する新しい課題に対処するエンドツーエンドマルチタスクシステムを提案する。
また、ベンチマークCEASE-v2.0データセットに基づいて、手動で翻訳したコード混合自殺メモコーパス、CoMCEASE-v2.0を導入する。
自殺ノートの時間方向と感情情報を利用して全体のパフォーマンスを向上する。
論文 参考訳(メタデータ) (2022-05-20T06:31:08Z) - An ensemble deep learning technique for detecting suicidal ideation from
posts in social media platforms [0.0]
本稿ではLSTM-Attention-CNN複合モデルを提案する。
提案されたモデルは90.3%の精度、F1スコア92.6%の精度を示した。
論文 参考訳(メタデータ) (2021-12-17T15:34:03Z) - Characterization of Time-variant and Time-invariant Assessment of
Suicidality on Reddit using C-SSRS [9.424631103856596]
Redditデータから,重症度と時間性の観点から自殺リスクを評価するディープラーニングアルゴリズムを開発した。
本研究では, 時間変動アプローチが自殺関連思考と支持行動の評価において時間不変手法を上回っていることを示唆した。
提案手法は臨床診断面接と統合して自殺リスク評価を改善することができる。
論文 参考訳(メタデータ) (2021-04-09T01:39:41Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Survival Modeling of Suicide Risk with Rare and Uncertain Diagnoses [15.732431764583323]
我々は,自殺未遂により入院し,後に退院した患者に対して,その後の自殺未遂のリスクを調査するために医療クレームデータを用いた。
疑わしい」自殺未遂の約20%は、傷害や毒の外部原因を示す診断コードから特定される。
論文 参考訳(メタデータ) (2020-09-05T20:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。