論文の概要: Learning from Negative Samples in Generative Biomedical Entity Linking
- arxiv url: http://arxiv.org/abs/2408.16493v1
- Date: Thu, 29 Aug 2024 12:44:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 13:52:39.999273
- Title: Learning from Negative Samples in Generative Biomedical Entity Linking
- Title(参考訳): ジェネレーティブバイオメディカルエンティティリンクにおける負のサンプルからの学習
- Authors: Chanhwi Kim, Hyunjae Kim, Sihyeon Park, Jiwoo Lee, Mujeen Sung, Jaewoo Kang,
- Abstract要約: 陰性サンプルを用いて生成BioELモデルをトレーニングする最初のフレームワークであるANGELを紹介する。
ANGELで微調整したモデルでは,5つのベンチマークで平均1.4%の精度で,従来の最良ベースラインモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 20.660717375784596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models have become widely used in biomedical entity linking (BioEL) due to their excellent performance and efficient memory usage. However, these models are usually trained only with positive samples--entities that match the input mention's identifier--and do not explicitly learn from hard negative samples, which are entities that look similar but have different meanings. To address this limitation, we introduce ANGEL (Learning from Negative Samples in Generative Biomedical Entity Linking), the first framework that trains generative BioEL models using negative samples. Specifically, a generative model is initially trained to generate positive samples from the knowledge base for given input entities. Subsequently, both correct and incorrect outputs are gathered from the model's top-k predictions. The model is then updated to prioritize the correct predictions through direct preference optimization. Our models fine-tuned with ANGEL outperform the previous best baseline models by up to an average top-1 accuracy of 1.4% on five benchmarks. When incorporating our framework into pre-training, the performance improvement further increases to 1.7%, demonstrating its effectiveness in both the pre-training and fine-tuning stages. Our code is available at https://github.com/dmis-lab/ANGEL.
- Abstract(参考訳): バイオメディカル・エンティティ・リンク (BioEL) では, 優れた性能と効率的なメモリ使用量のため, 生成モデルが広く利用されている。
しかしながら、これらのモデルは、通常、正のサンプル(入力参照の識別子にマッチするエンティティ)でのみ訓練され、硬い負のサンプルから明示的には学習されない。
この制限に対処するために、陰性サンプルを用いた生成バイオELモデルをトレーニングする最初のフレームワークであるANGEL(Generative Biomedical Entity Linkingにおける負のサンプルからの学習)を導入する。
具体的には、生成モデルは、まず、与えられた入力エンティティの知識ベースから正のサンプルを生成するように訓練される。
その後、モデルのトップk予測から正しい出力と間違った出力の両方を収集する。
モデルを更新して、直接選好最適化によって正しい予測を優先順位付けする。
ANGELで微調整したモデルでは,5つのベンチマークで平均1.4%の精度で,従来の最良ベースラインモデルよりも優れていた。
我々のフレームワークを事前トレーニングに組み込むと、パフォーマンスがさらに1.7%向上し、事前トレーニングと微調整の両方でその効果が示された。
私たちのコードはhttps://github.com/dmis-lab/ANGELで公開されています。
関連論文リスト
- Universality in Transfer Learning for Linear Models [18.427215139020625]
回帰モデルと二分分類モデルの両方を対象とした線形モデルにおける伝達学習の問題点について検討する。
我々は、厳密かつ厳密な分析を行い、事前訓練されたモデルと微調整されたモデルに対する一般化誤差(回帰)と分類誤差(二分分類)を関連付ける。
論文 参考訳(メタデータ) (2024-10-03T03:09:09Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
本研究では,データキュレーションが生成モデルの反復的再学習に与える影響について検討する。
報奨モデルに従ってデータをキュレートすると、反復的再訓練手順の期待報酬が最大になることを示す。
論文 参考訳(メタデータ) (2024-06-12T21:28:28Z) - Post-Hoc Reversal: Are We Selecting Models Prematurely? [13.910702424593797]
ポストホック変換を適用した後に性能傾向が逆転するポストホック逆転現象を示す。
予備的な分析は、これらの変換が、誤ラベルされた例の影響を抑えることによって、逆転を引き起こすことを示唆している。
ポストホック選択(post-hoc selection)は、ポストホックメトリクスがモデル開発決定を通知するシンプルな手法である。
論文 参考訳(メタデータ) (2024-04-11T14:58:19Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
CLIPのようなファンデーションモデルは、追加のトレーニングデータなしで、さまざまなタスクでゼロショット転送を可能にする。
微調整やアンサンブルも一般的に下流のタスクに合うように採用されている。
しかし、先行研究は基礎モデルに固有のバイアスを見落としていると論じる。
論文 参考訳(メタデータ) (2023-10-12T08:01:11Z) - Neural Priming for Sample-Efficient Adaptation [92.14357804106787]
ニューラルプライミング(Neural Priming)は、大規模な事前学習されたモデルを分散シフトや下流タスクに適応させる手法である。
ニューラルプライミングは、LAION-2Bほどの大きさの事前訓練であっても、テスト時に行うことができる。
論文 参考訳(メタデータ) (2023-06-16T21:53:16Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
本稿では,補助モデルにより生成された学習信号を用いて,大規模自動符号化言語モデルの事前学習を行う。
我々は「モデル生成dEnoising TRaining Objective」(METRO)というレシピを提案する。
結果、最大54億のパラメータからなるMETRO-LMは、GLUE、SuperGLUE、SQuADベンチマークで新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-04-13T21:39:15Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
言語モデルは、テキストコーパスの教師なしトレーニングからさまざまな能力を学ぶことができる。
人間がラベル付きデータを提供するよりも選択肢を選択する方が簡単であり、事前の作業はそのような選好比較から報酬モデルをトレーニングすることで最先端のパフォーマンスを達成した。
能動的学習とリスク-逆強化学習を用いてサンプル効率とロバスト性を向上させる不確実性推定によるこれらの問題に対処することを模索する。
論文 参考訳(メタデータ) (2022-03-14T20:13:21Z) - Ensembling Off-the-shelf Models for GAN Training [55.34705213104182]
事前学習されたコンピュータビジョンモデルは、識別器のアンサンブルで使用する場合、性能を著しく向上させることができる。
本研究では,事前学習したモデル埋め込みにおける実検体と偽検体間の線形分離性を検証し,効率的な選択機構を提案する。
本手法は, 限られたデータと大規模設定の両方において, GAN トレーニングを改善することができる。
論文 参考訳(メタデータ) (2021-12-16T18:59:50Z) - Positive-Congruent Training: Towards Regression-Free Model Updates [87.25247195148187]
画像分類において、サンプルワイドの不整合は「負のフリップ」として現れる
新しいモデルは、古い(参照)モデルによって正しく分類されたテストサンプルの出力を誤って予測する。
そこで本研究では,PC トレーニングのための簡易なアプローチである Focal Distillation を提案する。
論文 参考訳(メタデータ) (2020-11-18T09:00:44Z) - A Comparison of LSTM and BERT for Small Corpus [0.0]
NLP分野の最近の進歩は、スクラッチから始めるのではなく、事前学習されたモデルを調整することによって、新しいタスクの最先端結果を達成するのに、トランスファーラーニングが役立つことを示している。
本稿では、学術と産業の科学者が頻繁に直面する現実的なシナリオに焦点を当てる。小さなデータセットがあれば、BERTのような大規模な事前学習モデルを使用して、単純なモデルよりも優れた結果を得ることができるか?
実験の結果,2方向LSTMモデルは小データセットのBERTモデルよりもはるかに高い結果が得られることが示され,これらの単純なモデルは事前学習したモデルよりもはるかに少ない時間で訓練されることがわかった。
論文 参考訳(メタデータ) (2020-09-11T14:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。