論文の概要: OpenBias: Open-set Bias Detection in Text-to-Image Generative Models
- arxiv url: http://arxiv.org/abs/2404.07990v2
- Date: Mon, 5 Aug 2024 12:55:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 23:07:02.279361
- Title: OpenBias: Open-set Bias Detection in Text-to-Image Generative Models
- Title(参考訳): OpenBias: テキストから画像への生成モデルにおけるオープンセットバイアス検出
- Authors: Moreno D'Incà, Elia Peruzzo, Massimiliano Mancini, Dejia Xu, Vidit Goel, Xingqian Xu, Zhangyang Wang, Humphrey Shi, Nicu Sebe,
- Abstract要約: OpenBiasを提示するテキストから画像生成モデルにおけるオープンセットバイアス検出の課題に対処する。
OpenBiasは、事前コンパイルされた集合にアクセスすることなく、バイアスの深刻度を不可知的に識別し、定量化する。
本研究では, 安定拡散1.5, 2, XLの挙動について検討した。
- 参考スコア(独自算出の注目度): 108.2219657433884
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Text-to-image generative models are becoming increasingly popular and accessible to the general public. As these models see large-scale deployments, it is necessary to deeply investigate their safety and fairness to not disseminate and perpetuate any kind of biases. However, existing works focus on detecting closed sets of biases defined a priori, limiting the studies to well-known concepts. In this paper, we tackle the challenge of open-set bias detection in text-to-image generative models presenting OpenBias, a new pipeline that identifies and quantifies the severity of biases agnostically, without access to any precompiled set. OpenBias has three stages. In the first phase, we leverage a Large Language Model (LLM) to propose biases given a set of captions. Secondly, the target generative model produces images using the same set of captions. Lastly, a Vision Question Answering model recognizes the presence and extent of the previously proposed biases. We study the behavior of Stable Diffusion 1.5, 2, and XL emphasizing new biases, never investigated before. Via quantitative experiments, we demonstrate that OpenBias agrees with current closed-set bias detection methods and human judgement.
- Abstract(参考訳): テキスト・ツー・イメージ・ジェネレーティブ・モデルが一般大衆に普及し、アクセスしやすくなっている。
これらのモデルは大規模な展開を見込んでいるため、あらゆる種類のバイアスを分散させ、永続させないように、彼らの安全性と公正性を深く調査する必要がある。
しかし、既存の研究は偏見の閉集合の検出に重点を置いており、研究をよく知られた概念に限定している。
本稿では,プリコンパイルされた集合にアクセスすることなく,バイアスの重大さを不可知的に識別し,定量化する新しいパイプラインであるOpenBiasを提示するテキスト・ツー・イメージ生成モデルにおいて,オープン・セットバイアス検出の課題に取り組む。
OpenBiasには3つのステージがある。
第1フェーズでは,大言語モデル(LLM)を用いて,一組のキャプションが与えられた場合のバイアスを提案する。
第二に、ターゲット生成モデルは、同じキャプションセットを使用して画像を生成する。
最後に、視覚質問回答モデルは、これまで提案されたバイアスの存在と範囲を認識する。
本研究では, 安定拡散1.5, 2, XLの挙動について検討した。
定量的実験により、OpenBiasは現在のクローズドセットバイアス検出法と人間の判断と一致することを示した。
関連論文リスト
- Unmasking Conversational Bias in AI Multiagent Systems [1.0705399532413618]
生成モデルを含むマルチエージェントシステムで生じる可能性のあるバイアスは、未研究のままである。
本稿では,対話型大規模言語モデルのマルチエージェントシステムにおけるバイアスの定量化を目的としたフレームワークを提案する。
エコーチャンバー実験で観測されたバイアスは、現在最先端のバイアス検出法で検出されていない。
論文 参考訳(メタデータ) (2025-01-24T09:10:02Z) - MAVias: Mitigate any Visual Bias [19.140362626182856]
コンピュータビジョンモデルにおけるバイアスの緩和は、人工知能モデルの信頼性への重要なステップである。
我々は,基礎モデルを利用したオープンセットバイアス緩和手法であるMAViasを導入し,視覚属性と対象クラス間の刺激的な関連を見出す。
CelebA、Waterbirds、ImageNet、UrbanCarsなどの多様なデータセットに関する実験は、MAViasが視覚認識タスクの幅広いバイアスを効果的に検出し軽減し、最先端技術を上回ることを示しています。
論文 参考訳(メタデータ) (2024-12-09T16:23:51Z) - GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models [75.04426753720553]
開集合におけるバイアスを特定し,定量化し,説明するための枠組みを提案する。
このパイプラインはLarge Language Model (LLM)を活用して、一連のキャプションから始まるバイアスを提案する。
このフレームワークには、OpenBiasとGradBiasの2つのバリエーションがあります。
論文 参考訳(メタデータ) (2024-08-29T16:51:07Z) - MoESD: Mixture of Experts Stable Diffusion to Mitigate Gender Bias [23.10522891268232]
テキスト・ツー・イメージ・モデルにおいて、ジェンダーバイアスを軽減するためのMixture-of-Expertsアプローチを導入する。
画像品質を維持しながら, 性別偏見の軽減に成功していることを示す。
論文 参考訳(メタデータ) (2024-06-25T14:59:31Z) - Quantifying Bias in Text-to-Image Generative Models [49.60774626839712]
テキスト・トゥ・イメージ(T2I)モデルにおけるバイアスは不公平な社会的表現を伝播させ、アイデアを積極的にマーケティングしたり、議論の的となっている議題を推進したりするのに用いられる。
既存のT2Iモデルバイアス評価手法は、社会的バイアスのみに焦点を当てる。
本稿では,T2I生成モデルにおける一般バイアスの定量化手法を提案する。
論文 参考訳(メタデータ) (2023-12-20T14:26:54Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Discovering and Mitigating Visual Biases through Keyword Explanation [66.71792624377069]
視覚バイアスをキーワードとして解釈するBias-to-Text(B2T)フレームワークを提案する。
B2Tは、CelebAの性別バイアス、ウォーターバードの背景バイアス、ImageNet-R/Cの分布シフトなど、既知のバイアスを特定することができる。
B2Tは、Dollar StreetやImageNetのような大きなデータセットで、新しいバイアスを明らかにする。
論文 参考訳(メタデータ) (2023-01-26T13:58:46Z) - Don't Discard All the Biased Instances: Investigating a Core Assumption
in Dataset Bias Mitigation Techniques [19.252319300590656]
データセットバイアスを緩和する既存のテクニックは、バイアス付きモデルを利用してバイアス付きインスタンスを識別することが多い。
これらの偏りのあるインスタンスの役割は、メインモデルのトレーニング中に減少し、アウト・オブ・ディストリビューションデータに対するロバスト性を高める。
本稿では,この仮定が一般には成り立たないことを示す。
論文 参考訳(メタデータ) (2021-09-01T10:25:46Z) - Greedy Gradient Ensemble for Robust Visual Question Answering [163.65789778416172]
VQA(Visual Question Answering)では、分布バイアスとショートカットバイアスという2つの側面から生じる言語バイアスを強調している。
本稿では,非バイアスベースモデル学習に複数のバイアスモデルを組み合わせた新しいデバイアスフレームワークGreedy Gradient Ensemble(GGE)を提案する。
GGEはバイアス付きモデルを優先的にバイアス付きデータ分布に過度に適合させ、バイアス付きモデルでは解決が難しい例にベースモデルがより注意を払う。
論文 参考訳(メタデータ) (2021-07-27T08:02:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。