Reinforcement Learning without Human Feedback for Last Mile Fine-Tuning of Large Language Models
- URL: http://arxiv.org/abs/2408.16753v1
- Date: Thu, 29 Aug 2024 17:49:18 GMT
- Title: Reinforcement Learning without Human Feedback for Last Mile Fine-Tuning of Large Language Models
- Authors: Alec Solway,
- Abstract summary: Reinforcement learning is used to align language models with human signals.
This work develops a framework for last-mile fine-tuning using reinforcement learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning is used to align language models with human preference signals after first pre-training the model to predict the next token of text within a large corpus using likelihood maximization. Before being deployed in a specific domain, models are often further fine-tuned on task specific data. Since human preferences are often unavailable for the last step, it is performed using likelihood maximization as that is the typical default method. However, reinforcement learning has other advantages besides facilitating alignment to a human derived reward function. For one, whereas likelihood maximization is a form of imitation learning in which the model is trained on what to do under ideal conditions, reinforcement learning is not limited to demonstrating actions just for optimally reached states and trains a model what to do under a range of scenarios as it explores the policy space. In addition, it also trains a model what not to do, suppressing competitive but poor actions. This work develops a framework for last-mile fine-tuning using reinforcement learning and tests whether it garners performance gains. The experiments center on abstractive summarization, but the framework is general and broadly applicable. Use of the procedure produced significantly better results than likelihood maximization when comparing raw predictions. For the specific data tested, the gap could be bridged by employing post-processing of the maximum likelihood outputs. Nonetheless, the framework offers a new avenue for model optimization in situations where post-processing may be less straightforward or effective, and it can be extended to include more complex classes of undesirable outputs to penalize and train against, such as hallucinations.
Related papers
- Amuro & Char: Analyzing the Relationship between Pre-Training and Fine-Tuning of Large Language Models [17.288865972774587]
We investigate the relationship between pre-training and fine-tuning by fine-tuning multiple intermediate pre-trained model checkpoints.
Our results on 18 datasets suggest that pre-training improves the model in a latent way that unveils after fine-tuning.
arXiv Detail & Related papers (2024-08-13T06:28:43Z) - Ask Your Distribution Shift if Pre-Training is Right for You [74.18516460467019]
In practice, fine-tuning a pre-trained model improves robustness significantly in some cases but not at all in others.
We focus on two possible failure modes of models under distribution shift: poor extrapolation and biases in the training data.
Our study suggests that, as a rule of thumb, pre-training can help mitigate poor extrapolation but not dataset biases.
arXiv Detail & Related papers (2024-02-29T23:46:28Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Guiding The Last Layer in Federated Learning with Pre-Trained Models [18.382057374270143]
Federated Learning (FL) is an emerging paradigm that allows a model to be trained across a number of participants without sharing data.
We show that fitting a classification head using the Nearest Class Means (NCM) can be done exactly and orders of magnitude more efficiently than existing proposals.
arXiv Detail & Related papers (2023-06-06T18:02:02Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - A General Language Assistant as a Laboratory for Alignment [3.3598752405752106]
We study simple baseline techniques and evaluations, such as prompting.
We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models.
We study a preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.
arXiv Detail & Related papers (2021-12-01T22:24:34Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
We measure the impact of three different adaptation methods on the generalization and accuracy of models.
Experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers.
We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
arXiv Detail & Related papers (2021-09-07T03:13:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.