論文の概要: ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
- arxiv url: http://arxiv.org/abs/2408.16767v2
- Date: Sat, 30 Nov 2024 09:10:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:47.544511
- Title: ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
- Title(参考訳): ReconX:ビデオ拡散モデルでスパークビューからあらゆるシーンを再構築する
- Authors: Fangfu Liu, Wenqiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang, Yueqi Duan,
- Abstract要約: ReconXは、時間生成タスクとして曖昧な再構築課題を再編成する、新しい3Dシーン再構築パラダイムである。
提案したReconXはまずグローバルポイントクラウドを構築し、3D構造条件としてコンテキスト空間にエンコードする。
この条件に導かれ、ビデオ拡散モデルは、ディテール保存され、高い3D一貫性を示すビデオフレームを合成する。
- 参考スコア(独自算出の注目度): 16.14713604672497
- License:
- Abstract: Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
- Abstract(参考訳): 3Dシーン再構築の進歩は、現実世界の2D画像を3Dモデルに変え、数百枚の入力写真から現実的な3D結果を生み出した。
密集したビューの再現シナリオでは大きな成功を収めたにもかかわらず、キャプチャーの不十分なビューから詳細なシーンをレンダリングすることは依然として不適切な最適化問題であり、しばしば目に見えない領域でアーティファクトや歪みをもたらす。
本稿では,時間生成タスクとして曖昧な再構築課題を再構築する,新しい3Dシーン再構築パラダイムであるReconXを提案する。
重要な洞察は、スパースビュー再構成のための大規模な事前学習ビデオ拡散モデルに先立って、強力な生成を解き放つことである。
しかし、3Dビューの一貫性は、事前訓練されたモデルから直接生成されたビデオフレームに正確に保存される。
これを解決するために,提案したReconXはまずグローバルポイントクラウドを構築し,それを3次元構造条件としてコンテキスト空間にエンコードする。
この条件に導かれ、ビデオ拡散モデルは、ディテール保存されたビデオフレームを合成し、高い3D一貫性を示し、様々な視点からシーンのコヒーレンスを確保する。
最後に,生成した映像から3D映像を3Dガウス分割最適化方式により復元する。
様々な実世界のデータセットに対する大規模な実験は、品質と一般化性の観点から、最先端の手法よりもReconXの方が優れていることを示している。
関連論文リスト
- Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High- resolution Image-to-3D model (Hi3D) はビデオ拡散に基づく新しいパラダイムであり、単一の画像を3D対応シーケンシャル画像生成としてマルチビュー画像に再定義する。
Hi3Dは事前に学習した映像拡散モデルを3D対応で強化し、低解像度のテクスチャディテールを持つマルチビュー画像を生成する。
論文 参考訳(メタデータ) (2024-09-11T17:58:57Z) - HoloDreamer: Holistic 3D Panoramic World Generation from Text Descriptions [31.342899807980654]
3Dシーン生成は、仮想現実、ゲーム、映画産業など、さまざまな領域で高い需要がある。
フル3Dシーンの全体的初期化として,最初に高精細パノラマを生成するフレームワークであるHoloDreamerを紹介する。
そして、3Dガウススティング(3D-GS)を活用して3Dシーンを迅速に再構築し、ビュー一貫性と完全に囲まれた3Dシーンの作成を容易にする。
論文 参考訳(メタデータ) (2024-07-21T14:52:51Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - Sp2360: Sparse-view 360 Scene Reconstruction using Cascaded 2D Diffusion Priors [51.36238367193988]
潜時拡散モデル(LDM)を用いた360度3次元シーンのスパースビュー再構成に挑戦する。
SparseSplat360は,未完成の細部を埋めたり,新しいビューをクリーンにするために,インペイントとアーティファクト除去のカスケードを利用する手法である。
提案手法は,9つの入力ビューから360度映像全体を生成する。
論文 参考訳(メタデータ) (2024-05-26T11:01:39Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
本稿では,2次元拡散モデル以前の自然画像と,現在のシーンのグローバルな3次元情報を利用して,高品質で新しいコンテンツを合成する生成的精細化ネットワークを提案する。
提案手法は,視覚的品質と3次元の整合性を改善した多種多様なシーン生成と任意のカメラトラジェクトリをサポートする。
論文 参考訳(メタデータ) (2024-03-14T14:31:22Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
本稿では,数枚の写真を用いて現実のシーンを再構成するReconFusionを提案する。
提案手法は,合成および多視点データセットに基づいて訓練された新規なビュー合成に先立って拡散を利用する。
本手法は,観測領域の外観を保ちながら,非拘束領域における現実的な幾何学とテクスチャを合成する。
論文 参考訳(メタデータ) (2023-12-05T18:59:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。