論文の概要: Longitudinal Modularity, a Modularity for Link Streams
- arxiv url: http://arxiv.org/abs/2408.16877v1
- Date: Thu, 29 Aug 2024 19:58:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 17:08:59.112415
- Title: Longitudinal Modularity, a Modularity for Link Streams
- Title(参考訳): リンクストリームの時間的モジュラリティ, モジュール性
- Authors: Victor Brabant, Yasaman Asgari, Pierre Borgnat, Angela Bonifati, Remy Cazabet,
- Abstract要約: 時間ネットワークは、一般に実生活現象をモデル化するために使用される。
本稿では、ストリームをリンクするためによく知られたモジュラリティ品質関数の最初の適応を紹介します。
- 参考スコア(独自算出の注目度): 10.2856131683638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal networks are commonly used to model real-life phenomena. When these phenomena represent interactions and are captured at a fine-grained temporal resolution, they are modeled as link streams. Community detection is an essential network analysis task. Although many methods exist for static networks, and some methods have been developed for temporal networks represented as sequences of snapshots, few works can handle link streams. This article introduces the first adaptation of the well-known Modularity quality function to link streams. Unlike existing methods, it is independent of the time scale of analysis. After introducing the quality function, and its relation to existing static and dynamic definitions of Modularity, we show experimentally its relevance for dynamic community evaluation.
- Abstract(参考訳): 時間ネットワークは、一般に実生活現象をモデル化するために使用される。
これらの現象が相互作用を表し、微細な時間分解能で捉えられる場合、リンクストリームとしてモデル化される。
コミュニティ検出は重要なネットワーク分析タスクである。
静的ネットワークには多くの方法があり、スナップショットのシーケンスとして表される時間的ネットワークのためにいくつかの手法が開発されているが、リンクストリームを処理できる作業はほとんどない。
本稿では、ストリームをリンクするためによく知られたモジュラリティ品質関数の最初の適応を紹介します。
既存の方法とは異なり、分析の時間スケールとは独立している。
モジュラリティの静的および動的定義と品質関数を導入した後、動的コミュニティ評価に対するその妥当性を実験的に示す。
関連論文リスト
- Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
連続時間動的ネットワーク表現のためのPiecewise-Veable Model (PiVeM)。
超低次元空間において、PiVeMはネットワーク構造と力学をうまく表現できることを示す。
リンク予測などの下流タスクでは、関連する最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2022-12-23T13:57:56Z) - PSNet: Parallel Symmetric Network for Video Salient Object Detection [85.94443548452729]
我々は,PSNet という名前のアップ・ダウン・パラレル対称性を持つ VSOD ネットワークを提案する。
2つの並列ブランチが、ビデオの完全サリエンシ復号化を実現するために設定されている。
論文 参考訳(メタデータ) (2022-10-12T04:11:48Z) - FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial
Video Classification [49.06447472006251]
本稿では,FuTH-Netと呼ばれる新しいディープニューラルネットワークを提案する。
本モデルは,ERAとDrone-Actionの2つの航空映像分類データセットを用いて評価し,最先端の成果を得た。
論文 参考訳(メタデータ) (2022-09-22T21:15:58Z) - Generating fine-grained surrogate temporal networks [12.7211231166069]
代理時間ネットワークを生成するための新しい簡易な手法を提案する。
本手法は、入力ネットワークを時間とともに進化する星状構造に分解する。
次に、これらの構造をビルディングブロックとして使用して、代理時間ネットワークを生成する。
論文 参考訳(メタデータ) (2022-05-18T09:38:22Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Graph-Survival: A Survival Analysis Framework for Machine Learning on
Temporal Networks [14.430635608400982]
連続時間時間ネットワークのための生成モデルを設計するためのフレームワークを提案する。
本稿では,本フレームワーク内のモデルに適合する手法と,所望の特性を持つ新しい時間ネットワークをシミュレートするアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-14T16:40:57Z) - Predicting the temporal dynamics of turbulent channels through deep
learning [0.0]
最小乱流チャネル流の時間的進化を再現するニューラルネットワークの能力を評価することを目的としている。
長期記憶(LSTM)ネットワークとクープマンベースのフレームワーク(KNF)は、最小チャネルフローモードの時間ダイナミクスを予測するために訓練される。
論文 参考訳(メタデータ) (2022-03-02T09:31:03Z) - Slow-Fast Visual Tempo Learning for Video-based Action Recognition [78.3820439082979]
アクション・ビジュアル・テンポ(Action visual tempo)は、アクションのダイナミクスと時間スケールを特徴付ける。
以前の方法は、複数のレートで生のビデオをサンプリングするか、階層的にバックボーンの特徴をサンプリングすることによって、視覚的テンポをキャプチャする。
単一層における低レベルバックボーン特徴からアクション・テンポを抽出するための時間相関モジュール(TCM)を提案する。
論文 参考訳(メタデータ) (2022-02-24T14:20:04Z) - Temporal Transformer Networks with Self-Supervision for Action
Recognition [13.00827959393591]
自己監督型時変変器ネットワーク(TTSN)について紹介する。
TTSNは時間変圧器モジュールと時間列セルフスーパービジョンモジュールから構成される。
提案するTTSNは,動作認識のための最先端性能を達成する上で有望である。
論文 参考訳(メタデータ) (2021-12-14T12:53:53Z) - F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams [53.70940420595329]
エッジストリームにおける異常検出のための新しいアプローチであるF-FADEを提案する。
ノード対間の相互作用の周波数の時間進化分布を効率的にモデル化するために、新しい周波数分解技術を用いる。
F-FADEは、一定メモリしか必要とせず、時間的および構造的な変化を伴う幅広い種類の異常をオンラインストリーミング環境で処理できる。
論文 参考訳(メタデータ) (2020-11-09T19:55:40Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。