論文の概要: Discovery of False Data Injection Schemes on Frequency Controllers with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2408.16958v1
- Date: Fri, 30 Aug 2024 01:09:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 16:49:05.144380
- Title: Discovery of False Data Injection Schemes on Frequency Controllers with Reinforcement Learning
- Title(参考訳): 強化学習を用いた周波数制御器における偽データ注入方式の発見
- Authors: Romesh Prasad, Malik Hassanaly, Xiangyu Zhang, Abhijeet Sahu,
- Abstract要約: インバータベースの分散エネルギー資源(DER)は、再生可能エネルギーを電力システムに統合する上で重要な役割を果たす。
我々は、潜在的な脅威やシステムの脆弱性を特定するために強化学習を採用することを提案する。
- 参考スコア(独自算出の注目度): 7.540446548202259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While inverter-based distributed energy resources (DERs) play a crucial role in integrating renewable energy into the power system, they concurrently diminish the grid's system inertia, elevating the risk of frequency instabilities. Furthermore, smart inverters, interfaced via communication networks, pose a potential vulnerability to cyber threats if not diligently managed. To proactively fortify the power grid against sophisticated cyber attacks, we propose to employ reinforcement learning (RL) to identify potential threats and system vulnerabilities. This study concentrates on analyzing adversarial strategies for false data injection, specifically targeting smart inverters involved in primary frequency control. Our findings demonstrate that an RL agent can adeptly discern optimal false data injection methods to manipulate inverter settings, potentially causing catastrophic consequences.
- Abstract(参考訳): インバータをベースとした分散型エネルギー資源(DER)は、再生可能エネルギーを電力システムに統合する上で重要な役割を担っているが、グリッドのシステムの慣性を同時に減少させ、周波数不安定のリスクを増大させる。
さらに、通信ネットワークを介してインターフェースされるスマートインバータは、厳格に管理されていなくても、サイバー脅威に潜在的な脆弱性をもたらす。
高度なサイバー攻撃に対して電力網を積極的に強化するために,脅威やシステム脆弱性の特定に強化学習(RL)を採用することを提案する。
本研究は, 一次周波数制御に関わるスマートインバータを対象とする, 偽データ注入の敵方策の分析に焦点をあてる。
以上の結果から,RLエージェントはインバータ設定の操作に最適な偽データ注入法を十分に識別でき,破滅的な結果をもたらす可能性が示唆された。
関連論文リスト
- GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids [0.0]
本稿では,不均衡配電系統における偽データインジェクション攻撃(FDIA)を検出するために,教師なし対向オートエンコーダ(AAE)モデルを提案する。
提案手法は,オートエンコーダの構造における長期記憶(LSTM)を用いて,時系列計測における時間依存性をキャプチャする。
IEEE 13-bus と 123-bus で、歴史的気象データと歴史的実世界の負荷データを用いてテストされている。
論文 参考訳(メタデータ) (2024-03-31T01:20:01Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
本研究では,電力網における多段階サイバー攻撃の合成データを生成するモデルを提案する。
攻撃者のステップのシーケンスをモデル化するためにアタックツリーを使用し、ディフェンダーのアクションを組み込むゲーム理論のアプローチを使用する。
論文 参考訳(メタデータ) (2023-12-21T09:54:18Z) - Trustworthy Artificial Intelligence Framework for Proactive Detection
and Risk Explanation of Cyber Attacks in Smart Grid [11.122588110362706]
分散型エネルギー資源(DER)の急速な成長は、グリッドコントローラに重大なサイバーセキュリティと信頼の課題をもたらす。
信頼性の高いスマートグリッドコントローラを実現するために,DERの制御・統計メッセージによって引き起こされるサイバーリスクを積極的に識別し,説明するための,信頼できる人工知能(AI)機構について検討する。
論文 参考訳(メタデータ) (2023-06-12T02:28:17Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
本稿では,無線環境における回帰問題を考察し,敵攻撃がDLベースのアプローチを損なう可能性があることを示す。
また,攻撃に対するDLベースの無線システムの堅牢性が著しく向上することを示す。
論文 参考訳(メタデータ) (2022-06-14T04:55:11Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
本論文は、まず、分散不確実性や逆データに対して汎用機械学習モデルを堅牢にするための原則的手法を開発する。
次に、この堅牢なフレームワークの上に構築し、グラフメソッドによる堅牢な半教師付き学習を設計します。
この論文の第2部は、次世代の有線および無線ネットワークの可能性を完全に解き放つことを意図している。
論文 参考訳(メタデータ) (2022-02-08T05:49:06Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Risk-Aware Learning for Scalable Voltage Optimization in Distribution
Grids [19.0428894025206]
本稿では、反応電力予測や電圧偏差に伴う潜在的なリスクを考慮し、学習可能なアプローチを改善することを目的とする。
具体的には,最悪の事例のみに基づいて,条件付きリスク損失(CVaR)を用いて,そのようなリスクを測定することを提案する。
そこで本研究では, CVaR損失目標に基づくトレーニングプロセスを加速するために, 最悪のサンプルを含む可能性が低いミニバッチを選択することを提案する。
論文 参考訳(メタデータ) (2021-10-04T15:00:13Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。