CP-VoteNet: Contrastive Prototypical VoteNet for Few-Shot Point Cloud Object Detection
- URL: http://arxiv.org/abs/2408.17036v1
- Date: Fri, 30 Aug 2024 06:13:49 GMT
- Title: CP-VoteNet: Contrastive Prototypical VoteNet for Few-Shot Point Cloud Object Detection
- Authors: Xuejing Li, Weijia Zhang, Chao Ma,
- Abstract summary: Few-shot point cloud 3D object detection (FS3D) aims to identify and localise objects of novel classes from point clouds.
We introduce contrastive semantics mining, which enables the network to extract discriminative categorical features.
Through refined primitive geometric structures, the transferability of feature encoding from base to novel classes is significantly enhanced.
- Score: 7.205000222081269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot point cloud 3D object detection (FS3D) aims to identify and localise objects of novel classes from point clouds, using knowledge learnt from annotated base classes and novel classes with very few annotations. Thus far, this challenging task has been approached using prototype learning, but the performance remains far from satisfactory. We find that in existing methods, the prototypes are only loosely constrained and lack of fine-grained awareness of the semantic and geometrical correlation embedded within the point cloud space. To mitigate these issues, we propose to leverage the inherent contrastive relationship within the semantic and geometrical subspaces to learn more refined and generalisable prototypical representations. To this end, we first introduce contrastive semantics mining, which enables the network to extract discriminative categorical features by constructing positive and negative pairs within training batches. Meanwhile, since point features representing local patterns can be clustered into geometric components, we further propose to impose contrastive relationship at the primitive level. Through refined primitive geometric structures, the transferability of feature encoding from base to novel classes is significantly enhanced. The above designs and insights lead to our novel Contrastive Prototypical VoteNet (CP-VoteNet). Extensive experiments on two FS3D benchmarks FS-ScanNet and FS-SUNRGBD demonstrate that CP-VoteNet surpasses current state-of-the-art methods by considerable margins across different FS3D settings. Further ablation studies conducted corroborate the rationale and effectiveness of our designs.
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Prototypical VoteNet for Few-Shot 3D Point Cloud Object Detection [37.48935478836176]
Prototypical VoteNet is a few-shot 3D point cloud object detection approach.
It incorporates two new modules: Prototypical Vote Module (PVM) and Prototypical Head Module (PHM)
arXiv Detail & Related papers (2022-10-11T16:25:38Z) - GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation [91.15865862160088]
We introduce a geometric flow network (GFNet) to explore the geometric correspondence between different views in an align-before-fuse manner.
Specifically, we devise a novel geometric flow module (GFM) to bidirectionally align and propagate the complementary information across different views.
arXiv Detail & Related papers (2022-07-06T11:48:08Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature
Aggregation [12.093182949686781]
We propose a novel 3D point cloud learning network, referred to as Dynamic Point Feature Aggregation Network (DPFA-Net)
DPFA-Net has two variants for semantic segmentation and classification of 3D point clouds.
It achieves the state-of-the-art overall accuracy score for semantic segmentation on the S3DIS dataset.
arXiv Detail & Related papers (2021-11-14T05:46:05Z) - Learning point embedding for 3D data processing [2.12121796606941]
Current point-based methods are essentially spatial relationship processing networks.
Our architecture, PE-Net, learns the representation of point clouds in high-dimensional space.
Experiments show that PE-Net achieves the state-of-the-art performance in multiple challenging datasets.
arXiv Detail & Related papers (2021-07-19T00:25:28Z) - Segmenting 3D Hybrid Scenes via Zero-Shot Learning [13.161136148641813]
This work is to tackle the problem of point cloud semantic segmentation for 3D hybrid scenes under the framework of zero-shot learning.
We propose a network to synthesize point features for various classes of objects by leveraging the semantic features of both seen and unseen object classes, called PFNet.
The proposed PFNet employs a GAN architecture to synthesize point features, where the semantic relationship between seen-class and unseen-class features is consolidated by adapting a new semantic regularizer.
We introduce two benchmarks for algorithmic evaluation by re-organizing the public S3DIS and ScanNet datasets under six different data splits.
arXiv Detail & Related papers (2021-07-01T13:21:49Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - 3D Object Classification on Partial Point Clouds: A Practical
Perspective [91.81377258830703]
A point cloud is a popular shape representation adopted in 3D object classification.
This paper introduces a practical setting to classify partial point clouds of object instances under any poses.
A novel algorithm in an alignment-classification manner is proposed in this paper.
arXiv Detail & Related papers (2020-12-18T04:00:56Z) - SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds [96.51884187479585]
We propose a novel 3D shape signature to explore the shape information from point clouds.
By incorporating operations of symmetry, convex hull and chebyshev fitting, the proposed shape sig-nature is not only compact and effective but also robust to the noise.
Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets.
arXiv Detail & Related papers (2020-04-06T16:01:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.