SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds
- URL: http://arxiv.org/abs/2004.02774v1
- Date: Mon, 6 Apr 2020 16:01:41 GMT
- Title: SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds
- Authors: Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, Dahua Lin
- Abstract summary: We propose a novel 3D shape signature to explore the shape information from point clouds.
By incorporating operations of symmetry, convex hull and chebyshev fitting, the proposed shape sig-nature is not only compact and effective but also robust to the noise.
Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets.
- Score: 96.51884187479585
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-class 3D object detection aims to localize and classify objects of
multiple categories from point clouds. Due to the nature of point clouds, i.e.
unstructured, sparse and noisy, some features benefit-ting multi-class
discrimination are underexploited, such as shape information. In this paper, we
propose a novel 3D shape signature to explore the shape information from point
clouds. By incorporating operations of symmetry, convex hull and chebyshev
fitting, the proposed shape sig-nature is not only compact and effective but
also robust to the noise, which serves as a soft constraint to improve the
feature capability of multi-class discrimination. Based on the proposed shape
signature, we develop the shape signature networks (SSN) for 3D object
detection, which consist of pyramid feature encoding part, shape-aware grouping
heads and explicit shape encoding objective. Experiments show that the proposed
method performs remarkably better than existing methods on two large-scale
datasets. Furthermore, our shape signature can act as a plug-and-play component
and ablation study shows its effectiveness and good scalability
Related papers
- Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction [42.840655419509346]
This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs.
We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches.
Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation.
arXiv Detail & Related papers (2024-07-01T14:39:03Z) - Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
We propose a synthetic target representation composed of dense and complete point clouds depicting the target shape precisely by shape completion for robust 3D tracking.
Specifically, we design a voxelized 3D tracking framework with shape completion, in which we propose a quality-aware shape completion mechanism to alleviate the adverse effect of noisy historical predictions.
arXiv Detail & Related papers (2023-12-17T04:50:24Z) - MS23D: A 3D Object Detection Method Using Multi-Scale Semantic Feature Points to Construct 3D Feature Layer [4.644319899528183]
LiDAR point clouds can effectively depict the motion and posture of objects in three-dimensional space.
In autonomous driving scenarios, the sparsity and hollowness of point clouds create some difficulties for voxel-based methods.
We propose a two-stage 3D object detection framework, called MS23D.
arXiv Detail & Related papers (2023-08-31T08:03:25Z) - Prototype-Aware Heterogeneous Task for Point Cloud Completion [35.47134205562422]
Point cloud completion aims at recovering original shape information from partial point clouds.
Existing methods usually succeed in completion for standard shape, while failing to generate local details of point clouds for some non-standard shapes.
In this work, we design an effective way to distinguish standard/non-standard shapes with the help of intra-class shape representation.
arXiv Detail & Related papers (2022-09-05T02:43:06Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - ABD-Net: Attention Based Decomposition Network for 3D Point Cloud
Decomposition [1.3999481573773074]
We propose Attention Based Decomposition Network (ABD-Net) for point cloud decomposition.
We show improved performance of 3D object classification using attention features based on primitive shapes in point clouds.
arXiv Detail & Related papers (2021-07-09T08:39:30Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDAR-based 3D object detection pushes forward an immense influence on autonomous vehicles.
Due to the limitation of the intrinsic properties of LiDAR, fewer points are collected at the objects farther away from the sensor.
To address the challenge, we propose a novel two-stage 3D object detection framework, named SIENet.
arXiv Detail & Related papers (2021-03-29T07:45:09Z) - 3D Object Classification on Partial Point Clouds: A Practical
Perspective [91.81377258830703]
A point cloud is a popular shape representation adopted in 3D object classification.
This paper introduces a practical setting to classify partial point clouds of object instances under any poses.
A novel algorithm in an alignment-classification manner is proposed in this paper.
arXiv Detail & Related papers (2020-12-18T04:00:56Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
Point cloud is a principal data structure adopted for 3D geometric information encoding.
Shape-oriented message passing scheme dubbed ShapeConv is proposed to focus on the representation learning of the underlying shape formed by each local neighboring point.
arXiv Detail & Related papers (2020-04-20T16:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.