Counterfactual Data Augmentation with Contrastive Learning
- URL: http://arxiv.org/abs/2311.03630v1
- Date: Tue, 7 Nov 2023 00:36:51 GMT
- Title: Counterfactual Data Augmentation with Contrastive Learning
- Authors: Ahmed Aloui, Juncheng Dong, Cat P. Le, Vahid Tarokh
- Abstract summary: We introduce a model-agnostic data augmentation method that imputes the counterfactual outcomes for a selected subset of individuals.
We use contrastive learning to learn a representation space and a similarity measure such that in the learned representation space close individuals identified by the learned similarity measure have similar potential outcomes.
This property ensures reliable imputation of counterfactual outcomes for the individuals with close neighbors from the alternative treatment group.
- Score: 27.28511396131235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Statistical disparity between distinct treatment groups is one of the most
significant challenges for estimating Conditional Average Treatment Effects
(CATE). To address this, we introduce a model-agnostic data augmentation method
that imputes the counterfactual outcomes for a selected subset of individuals.
Specifically, we utilize contrastive learning to learn a representation space
and a similarity measure such that in the learned representation space close
individuals identified by the learned similarity measure have similar potential
outcomes. This property ensures reliable imputation of counterfactual outcomes
for the individuals with close neighbors from the alternative treatment group.
By augmenting the original dataset with these reliable imputations, we can
effectively reduce the discrepancy between different treatment groups, while
inducing minimal imputation error. The augmented dataset is subsequently
employed to train CATE estimation models. Theoretical analysis and experimental
studies on synthetic and semi-synthetic benchmarks demonstrate that our method
achieves significant improvements in both performance and robustness to
overfitting across state-of-the-art models.
Related papers
- Estimating Conditional Average Treatment Effects via Sufficient Representation Learning [31.822980052107496]
This paper proposes a novel neural network approach named textbfCrossNet to learn a sufficient representation for the features, based on which we then estimate the conditional average treatment effects (CATE)
Numerical simulations and empirical results demonstrate that our method outperforms the competitive approaches.
arXiv Detail & Related papers (2024-08-30T07:23:59Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
We propose a framework that accommodates adjustment for any subset of information expressed by the covariates.
Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estorimator (DOPE) for efficient estimation of the average treatment effect (ATE)
Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.
arXiv Detail & Related papers (2024-02-20T13:02:51Z) - Estimation of individual causal effects in network setup for multiple
treatments [4.53340898566495]
We study the problem of estimation of Individual Treatment Effects (ITE) in the context of multiple treatments and observational data.
We employ Graph Convolutional Networks (GCN) to learn a shared representation of the confounders.
Our approach utilizes separate neural networks to infer potential outcomes for each treatment.
arXiv Detail & Related papers (2023-12-18T06:07:45Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Learning from Similarity-Confidence Data [94.94650350944377]
We investigate a novel weakly supervised learning problem of learning from similarity-confidence (Sconf) data.
We propose an unbiased estimator of the classification risk that can be calculated from only Sconf data and show that the estimation error bound achieves the optimal convergence rate.
arXiv Detail & Related papers (2021-02-13T07:31:16Z) - Weighting-Based Treatment Effect Estimation via Distribution Learning [14.438302755258547]
We develop a distribution learning-based weighting method for treatment effect estimation.
Our method outperforms several cutting-edge weighting-only benchmarking methods.
It maintains its advantage under a doubly-robust estimation framework.
arXiv Detail & Related papers (2020-12-26T20:15:44Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.