論文の概要: FissionVAE: Federated Non-IID Image Generation with Latent Space and Decoder Decomposition
- arxiv url: http://arxiv.org/abs/2408.17090v1
- Date: Fri, 30 Aug 2024 08:22:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 16:09:30.416491
- Title: FissionVAE: Federated Non-IID Image Generation with Latent Space and Decoder Decomposition
- Title(参考訳): FissionVAE: 遅延空間とデコーダ分解による非IID画像のフェデレーション
- Authors: Chen Hu, Jingjing Deng, Xianghua Xie, Xiaoke Ma,
- Abstract要約: フェデレートされた学習により、分散化されたクライアントは、すべてのトレーニングデータをローカルに保ちながら、共有モデルを共同で学習することができる。
本稿では、潜在空間を分解し、個々のクライアントグループに適したデコーダブランチを構成する新しいアプローチFissionVAEを紹介する。
アプローチを評価するために,MNISTとFashionMNISTを組み合わせた2つの複合データセットを作成した。
- 参考スコア(独自算出の注目度): 9.059664504170287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a machine learning paradigm that enables decentralized clients to collaboratively learn a shared model while keeping all the training data local. While considerable research has focused on federated image generation, particularly Generative Adversarial Networks, Variational Autoencoders have received less attention. In this paper, we address the challenges of non-IID (independently and identically distributed) data environments featuring multiple groups of images of different types. Specifically, heterogeneous data distributions can lead to difficulties in maintaining a consistent latent space and can also result in local generators with disparate texture features being blended during aggregation. We introduce a novel approach, FissionVAE, which decomposes the latent space and constructs decoder branches tailored to individual client groups. This method allows for customized learning that aligns with the unique data distributions of each group. Additionally, we investigate the incorporation of hierarchical VAE architectures and demonstrate the use of heterogeneous decoder architectures within our model. We also explore strategies for setting the latent prior distributions to enhance the decomposition process. To evaluate our approach, we assemble two composite datasets: the first combines MNIST and FashionMNIST; the second comprises RGB datasets of cartoon and human faces, wild animals, marine vessels, and remote sensing images of Earth. Our experiments demonstrate that FissionVAE greatly improves generation quality on these datasets compared to baseline federated VAE models.
- Abstract(参考訳): フェデレーション学習(Federated Learning)は、分散化されたクライアントが、すべてのトレーニングデータをローカルに保ちながら、共有モデルを共同で学習することを可能にする機械学習パラダイムである。
多くの研究がフェデレーション画像生成、特にジェネレーティブ・アドバイサル・ネットワークに焦点を合わせてきたが、変分オートエンコーダはあまり注目されていない。
本稿では,非IID(独立に同一に分散した)データ環境の課題に対処する。
具体的には、不均一なデータ分布は、一貫した潜伏空間を維持することの難しさを招き、また、集合中に異なるテクスチャ特性がブレンドされるような局所的なジェネレータも生じる。
本稿では、潜在空間を分解し、個々のクライアントグループに適したデコーダブランチを構成する新しいアプローチFissionVAEを紹介する。
この方法は、各グループのユニークなデータ分布に合わせてカスタマイズされた学習を可能にする。
さらに,階層型VAEアーキテクチャの導入について検討し,本モデルにおける異種デコーダアーキテクチャの利用を実証する。
また, 分解過程を改善するために, 遅延前の分布を設定するための戦略についても検討する。
アプローチを評価するために,MNISTとFashionMNISTを組み合わせた2つの複合データセットを作成した。
実験により,FissionVAEはベースラインフェデレーションVAEモデルと比較して,これらのデータセットの生成品質を大幅に向上することが示された。
関連論文リスト
- Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE)は、ディープフェイク検出に特化した新しい埋め込み空間である。
CoDEは、グローバルローカルな類似性をさらに強化することで、対照的な学習を通じて訓練される。
論文 参考訳(メタデータ) (2024-07-29T18:00:10Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
本稿では,現在のアプローチの限界に対処する新しい変分オートエンコーダ(VAE)モデルを提案する。
本手法は,TVAEモデルにインスパイアされたベイジアン・ガウス混合モデル(BGM)をVAEアーキテクチャに組み込む。
我々は,2つの医療関連データセットを含む混合データ型を持つ実世界の3つのデータセットに対して,我々のモデルを徹底的に検証する。
論文 参考訳(メタデータ) (2024-04-12T12:31:06Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Distributed Traffic Synthesis and Classification in Edge Networks: A
Federated Self-supervised Learning Approach [83.2160310392168]
本稿では,多数の異種データセット上での自動トラフィック解析と合成を支援するFS-GANを提案する。
FS-GANは複数の分散ジェネレーティブ・アドバイサル・ネットワーク(GAN)から構成される
FS-GANは未知のサービスのデータを分類し、未知のタイプのトラフィック分布をキャプチャする合成サンプルを作成する。
論文 参考訳(メタデータ) (2023-02-01T03:23:11Z) - Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data [20.757477553095637]
Federated Learning(FL)は、クライアントが機械学習モデルを協調的にトレーニングすることを可能にする、プライバシプロモーティングフレームワークである。
連合学習における大きな課題は、局所データが不均一であるときに生じる。
我々は、クライアントが変動自動エンコーダをデプロイして、遅延データ表現の微分プライベートな手段を用いて、ローカルデータセットを合成するFLアルゴリズムであるFedDPMSを提案する。
論文 参考訳(メタデータ) (2022-06-01T18:00:48Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Self-supervised Correlation Mining Network for Person Image Generation [9.505343361614928]
人物画像生成は、ソース画像の非剛性変形を実現することを目的としている。
特徴空間のソース画像を再構成する自己教師付き相関マイニングネットワーク(SCM-Net)を提案する。
クロススケールポーズ変換の忠実度を向上させるために,グラフに基づく身体構造保持損失を提案する。
論文 参考訳(メタデータ) (2021-11-26T03:57:46Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
注意に基づくアーキテクチャ(例えばTransformers)は、分散シフトに対してかなり堅牢であることを示す。
我々の実験は、畳み込みネットワークをトランスフォーマーに置き換えることによって、過去のデバイスを壊滅的に忘れることを大幅に減らせることを示した。
論文 参考訳(メタデータ) (2021-06-10T21:04:18Z) - Multi-Facet Clustering Variational Autoencoders [9.150555507030083]
画像などの高次元データは通常、クラスタリング可能な複数の興味深い特徴を特徴付ける。
MFCVAE(Multi-Facet Clustering Variational Autoencoders)を導入する。
MFCVAEは複数のクラスタリングを同時に学習し、完全に教師なしでエンドツーエンドで訓練されている。
論文 参考訳(メタデータ) (2021-06-09T17:36:38Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
近年,1つの画像のみに基づく生成モデルによる完全学習が提案されている。
多様な外観のランダムなサンプルを生成するMOGANというMOrphologic-structure-aware Generative Adversarial Networkを紹介します。
合理的な構造の維持や外観の変化など、内部機能に重点を置いています。
論文 参考訳(メタデータ) (2021-03-04T12:45:23Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
GAN(Generative Adversarial Networks)は,近年,現実的な画像の合成において大きな進歩を遂げている。
GANは不適合や過度に適合する傾向があり、分析が困難で制約を受ける。
無限に多くのサンプルがあり、実際のデータ分布は単純である人工データセットでトレーニングする。
GANのトレーニング混合物はネットワークの深さや幅を増大させるよりもパフォーマンスが向上することがわかった。
論文 参考訳(メタデータ) (2020-07-13T14:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。