論文の概要: UTrack: Multi-Object Tracking with Uncertain Detections
- arxiv url: http://arxiv.org/abs/2408.17098v1
- Date: Fri, 30 Aug 2024 08:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 15:58:20.779845
- Title: UTrack: Multi-Object Tracking with Uncertain Detections
- Title(参考訳): UTrack:不確かさ検出付きマルチオブジェクト追跡
- Authors: Edgardo Solano-Carrillo, Felix Sattler, Antje Alex, Alexander Klein, Bruno Pereira Costa, Angel Bueno Rodriguez, Jannis Stoppe,
- Abstract要約: 我々は,物体検出中に経験的予測分布を得るための高速な手法を初めて紹介する。
我々の機構は最先端のトラッカーに容易に統合でき、検出の不確実性を完全に活用できる。
我々は,MOT17,MOT20,DanceTrack,KITTIなど,さまざまなベンチマークに対するコントリビューションの有効性を実証する。
- 参考スコア(独自算出の注目度): 37.826006378381955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The tracking-by-detection paradigm is the mainstream in multi-object tracking, associating tracks to the predictions of an object detector. Although exhibiting uncertainty through a confidence score, these predictions do not capture the entire variability of the inference process. For safety and security critical applications like autonomous driving, surveillance, etc., knowing this predictive uncertainty is essential though. Therefore, we introduce, for the first time, a fast way to obtain the empirical predictive distribution during object detection and incorporate that knowledge in multi-object tracking. Our mechanism can easily be integrated into state-of-the-art trackers, enabling them to fully exploit the uncertainty in the detections. Additionally, novel association methods are introduced that leverage the proposed mechanism. We demonstrate the effectiveness of our contribution on a variety of benchmarks, such as MOT17, MOT20, DanceTrack, and KITTI.
- Abstract(参考訳): トラッキング・バイ・検出のパラダイムは、多目的追跡において主流であり、トラックを物体検出器の予測に関連付ける。
信頼スコアを通して不確実性を示すが、これらの予測は推論プロセス全体の変動を捉えない。
しかし、自動運転や監視など、安全とセキュリティの重要なアプリケーションにとって、この予測の不確実性を知ることが不可欠である。
そこで本研究では,物体検出時に経験的予測分布を高速に取得し,その知識を多目的追跡に取り入れる手法を初めて紹介する。
我々の機構は最先端のトラッカーに容易に統合でき、検出の不確実性を完全に活用できる。
また,提案手法を利用した新しいアソシエーション手法も提案されている。
我々は,MOT17,MOT20,DanceTrack,KITTIなど,さまざまなベンチマークに対するコントリビューションの有効性を実証する。
関連論文リスト
- RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
本稿では,木構造メモリを用いてトラッカーと検出器を動的に関連付け,自己回復を可能にするRTrackerを提案する。
具体的には,正負と負のターゲットサンプルを時系列に保存し,維持する正負のツリー構造メモリを提案する。
我々の中核となる考え方は、正と負の目標カテゴリーの支持サンプルを用いて、目標損失の信頼性評価のための相対的距離に基づく基準を確立することである。
論文 参考訳(メタデータ) (2024-03-28T08:54:40Z) - UncertaintyTrack: Exploiting Detection and Localization Uncertainty in Multi-Object Tracking [8.645078288584305]
マルチオブジェクトトラッキング(MOT)手法は近年,性能が大幅に向上している。
複数のTBDトラッカーに適用可能なエクステンションのコレクションであるUncertaintyTrackを紹介します。
バークレーディープドライブMOTデータセットの実験では、我々の手法と情報的不確実性推定の組み合わせにより、IDスイッチの数を約19%削減している。
論文 参考訳(メタデータ) (2024-02-19T17:27:04Z) - Uncertainty-aware Unsupervised Multi-Object Tracking [33.53331700312752]
教師なしマルチオブジェクトトラッカーは、信頼できる機能埋め込みの学習に劣る。
最近の自己監督技術は採用されているが、時間的関係を捉えられなかった。
本稿では、不確実性問題は避けられないが、不確実性自体を活用して学習された一貫性を向上させることができると論じる。
論文 参考訳(メタデータ) (2023-07-28T09:03:06Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - Online Multi-Object Tracking with Unsupervised Re-Identification
Learning and Occlusion Estimation [80.38553821508162]
異なるオブジェクト間のオクルージョンは、MOT(Multi-Object Tracking)の典型的な課題である
本稿では,これらの問題に対処する2つの新しいモジュールを設計し,オンラインマルチオブジェクト追跡に焦点を当てる。
提案した教師なし再識別学習モジュールは、(疑似)識別情報を一切必要とせず、スケーラビリティの問題に悩まされることもない。
本研究は、最先端MOT法に適用した場合、教師なし再識別学習は教師なし再識別学習に匹敵するものであることを示す。
論文 参考訳(メタデータ) (2022-01-04T18:59:58Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Uncertainty-Aware Vehicle Orientation Estimation for Joint
Detection-Prediction Models [12.56249869551208]
オリエンテーションは、自律システムの下流モジュールにとって重要な特性である。
本稿では,既存のモデルを拡張し,共同物体検出と動き予測を行う手法を提案する。
さらに、この手法は予測の不確かさを定量化することができ、推定された向きが反転する確率を出力することができる。
論文 参考訳(メタデータ) (2020-11-05T21:59:44Z) - RetinaTrack: Online Single Stage Joint Detection and Tracking [22.351109024452462]
両タスクがミッションクリティカルな自律運転におけるトラッキング・バイ・検出パラダイムに注目した。
本稿では、一般的な単一ステージのRetinaNetアプローチを改良したRetinaTrackと呼ばれる、概念的にシンプルで効率的な検出と追跡のジョイントモデルを提案する。
論文 参考訳(メタデータ) (2020-03-30T23:46:29Z) - Confidence Trigger Detection: Accelerating Real-time Tracking-by-detection Systems [1.6037469030022993]
信頼強化検出(CTD)は、中間状態によく似たフレームのオブジェクト検出を戦略的に回避する革新的な手法である。
CTDは追跡速度を向上するだけでなく、既存の追跡アルゴリズムを超越して精度も維持する。
本実験はCTDフレームワークの堅牢性と汎用性を実証し,資源制約環境におけるリアルタイムトラッキングの実現の可能性を示した。
論文 参考訳(メタデータ) (2019-02-02T01:52:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。